
Once, Weakly: Typelist Meta-Algorithm Implementation
Tricks

Page 1 of 9

Typelist Meta-Algorithm Implementation Tricks
In the “Once, Weakly” of 9 September 2003 we looked at the concept of typelist meta-
algorithms. These are algorithms for manipulating typelists at compile time in a manner
reminiscent of STL generic algorithms. We also saw how to create meta-function objects
(including meta-predicates and meta-comparitors), and meta-function adapters.

In this installment of “Once, Weakly” we’ll examine a few more typelist meta-algorithms
to motivate a few somewhat half-baked metaprogramming techniques used to implement
them. (That’s why I’m calling them “tricks” instead of something more pretentious, like
“strategies.”)

Straightforward Leveraging
Many new meta-algorithms can be implemented in a straightforward way from existing
meta-algorithms. An obvious example is the implementation of Unique in terms of
UniqueEquiv.

template <class TList, template <class,class> class BPred>

struct UniqueEquiv;

UniqueEquiv removes duplicate adjacent types in a typelist that compare equal
according to the binary predicate BPred. Unique does the same thing but uses the type
equality by default. It is trivially implemented by invoking UniqueEquiv with the
appropriate predicate.

template <class TList>

struct Unique {

 typedef typename UniqueEquiv<TList,IsSame>::R R;

};

In the same way, we can implement Transform in terms of TransformIf through
use of a very agreeable predicate:

template <typename>

struct IsTrue { enum { r = true }; };

...

template <class TList, template <typename> class Op>

struct Transform {

 typedef typename TransformIf<TList,IsTrue,Op>::R R;

};

Another example is the implementation of Find in terms of FindIf. However, Find
is searching for a particular type, whereas FindIf requires a predicate. We simply
generate the appropriate predicate using an adapter to bind one argument of the IsSame1
binary predicate to produce a unary predicate:

template <class TList, typename T>

1 IsSame is from Andrei Alexandrescu’s Modern C++ Design.

Once, Weakly: Typelist Meta-Algorithm Implementation
Tricks

Page 2 of 9

struct Find {

 enum {r = FindIf<TList, Bind2nd<IsSame,T>::template Adapted>::r};

};

So Find is implemented in terms of FindIf, where the predicate asks if a type is the
same as T.

Ad Hoc Meta-Functions
Consider implementing an EraseIf algorithm:

template <class TList, template <typename> class Pred>

struct EraseIf;

We’d like to apply a predicate to each element of the typelist, and produce a typelist that
contains only the elements that did not satisfy the predicate. We could implement this
functionality from scratch, but we have an existing TransformIf algorithm and an
existing EraseAll algorithm.2 We can leverage these two if we can map the elements
to be removed to a particular type:

struct ToErase {};

The TransformIf algorithm requires a meta-function to apply to its typelist. A very
simple ad hoc meta-function will do:

template <typename>

struct MakeToErase {

 typedef ToErase R;

};

This function maps any type to ToErase. Now the implementation of EraseIf is
trivial; we use TransformIf to convert any element that satisfies the predicate into
ToErase, then use EraseAll to remove all the ToErases.

template <class TList, template <typename> class Pred>

struct EraseIf {

 typedef typename TransformIf<TList,Pred,MakeToErase>::R Marked;

 typedef typename EraseAll<Marked,ToErase>::R R;

};

Ad Hoc Adapters
Consider the problem of implementing a set union of two typelists, where a “less-than”
comparator is supplied explicitly:

template <class TList1, class TList2,

 template <typename,typename> class Comp>

struct SetUnionEquiv;

2 EraseAll is also Andrei’s, and TransformIf was described in the Once, Weakly of 9 September
2003. Any unattributed meta-algorithms may be found there, or in the source code that accompanies this
installment of “Once, Weakly.” That source code may be found at http://www.semantics.org/code.html.

Once, Weakly: Typelist Meta-Algorithm Implementation
Tricks

Page 3 of 9

This would seem like a fairly easy task, if we’re not too concerned about compile time
efficiency.3 Using existing meta-algorithms from our toolkit,4 we can just paste the two
typelists together, sort the result, and get rid of adjacent duplicates.5

template <class TList1, class TList2,

 template <typename,typename> class Comp>

struct SetUnionEquiv {

 typedef typename Append<TList1,TList2>::R RR;

 typedef typename Sort<RR,Comp>::R SRR;

 typedef typename UniqueEquiv<SRR,???>::R R;

};

The problem is that we’ve been supplied with a comparator, but we need an equivalence
operation to instantiate UniqueEquiv. (Speaking somewhat inaccurately, we need an
operator == of some sort, and all we have is an operator <.) Our existing meta-
object adapters don’t quite do what we need, although we can leverage them with a little
ad hoc trickery. First we create an adapter that exchanges the order of arguments of a
binary predicate:

template <template <class,class> class BPred>

struct ExchangeArgs {

 template <typename A, typename B>

 struct Adapted {

 enum { r = BPred<B,A>::r };

 };

};

Now we can produce an equivalence operation from a “less-than” operation as A equiv
B == !(A<B) && !(B<A). That is, A and B are equivalent if neither is less than the
other.

...

typedef typename

 UniqueEquiv<SRR,And2<

 Not2<Comp>::template Adapted,

 Not2<

 ExchangeArgs<Comp>::template Adapted

 >::template Adapted

 >::template Adapted>::R R;

3 Usually we aren’t. However, if we were to deal with very long typelists, the asymptotic complexity of
our meta-algorithms can be important. Also, see Scouting Out Optimizations. C/C++ Users Journal
Experts Forum, 21, 4 (April 2003) for a number of techniques that can be used to improve compile time
performance of metaprograms without changing their asymptotic complexity.
4 Append is Andrei’s too.
5 Yes, this differs from the behavior of the STL set_union, and yes, I meant it to, and no, I am not going
to change it to mimic the STL set_union. My way is better.

Once, Weakly: Typelist Meta-Algorithm Implementation
Tricks

Page 4 of 9

...

It’s not hard to understand how this sort of code can be irritating to maintainers. It’s
probably better to create a simpler ad hoc adapter that does the same thing, but more
clearly:

template <template <typename,typename> class Comp>

struct GenEquivalence {

 template <typename A, typename B>

 struct Equivalence {

 enum { r = !Comp<A,B>::r && !Comp<B,A>::r };

 };

};

This special-purpose adapter takes a comparator and produces an equivalence operation.
It’s instantiated with a comparator and produces a conformant equivalence operation as a
nested template. Invoking the nested template involves the usual syntactic contortions to
inform the compiler that the nested name Equivalence is a template name:

...

typedef typename

 UniqueEquiv<SRR,GenEquivalence<Comp>::template Equivalence>::R R;

...

Marking, Extracting, and Purging
Before we look at another user-level meta-algorithm, let’s consider the implementation of
some behind-the-scenes functionality.

Many meta-algorithms have a logical structure equivalent to selecting some subset of the
elements of a typelist, and then doing something with that subset. We can reify that
selection process with a marking algorithm:

template <class TList, template <typename> class Pred>

struct MarkList;

MarkList “marks” the elements of TList that satisfy Pred by constructing a parallel
Boolean typelist that indicates which elements are “marked.” Rather than come up with a
compile-time Boolean list construct, however, we can employ a typelist of known
structure. This implementation uses a typelist that contains types of the form char
(*)[n], where n is in the range from 1 to some platform-specific upper bound. By
convention, we’ll interpret char(*)[1] as false, and other bounds as true.6

template <typename Head, class Tail, template <typename> class Pred>

struct MarkList<typelist<Head,Tail>,Pred> {

 typedef typelist<char(*)[Pred<Head>::r+1],

 typename MarkList<Tail,Pred>::R> R;

};

6 This encoding can also serve as a compile-time list of positive integers through the use of sizeof on the
dereferenced pointer.

Once, Weakly: Typelist Meta-Algorithm Implementation
Tricks

Page 5 of 9

template <template <typename> class Pred>

struct MarkList<null_typelist,Pred> {

 typedef null_typelist R;

};

Once we have a means of identifying the subset of interest, we can implement other
operations. For instance, we can extract the marked items into a typelist:

template <class TList, class Marks>

struct ExtractList;

template <typename Head, class Tail, int bound, class MTail>

struct ExtractList< typelist<Head,Tail>,

 typelist<char(*)[bound],MTail> > {

 typedef typename ExtractList<Tail,MTail>::R ETail;

 typedef typename Select<

 !!(bound-1),

 typelist<Head,ETail>,

 ETail

 >::R R;

};

template <>

struct ExtractList<null_typelist,null_typelist> {

 typedef null_typelist R;

};

…or purge the items from the typelist:
template <class TList, class Marks>

struct PurgeList;

template <typename Head, class Tail, int bound, class MTail>

struct PurgeList< typelist<Head,Tail>,typelist<char(*)[bound],MTail>
> {

 typedef typename PurgeList<Tail,MTail>::R PTail;

 typedef typename Select<

 !(bound-1),

 typelist<Head,PTail>,

 PTail

 >::R R;

};

template <>

struct PurgeList<null_typelist,null_typelist> {

Once, Weakly: Typelist Meta-Algorithm Implementation
Tricks

Page 6 of 9

 typedef null_typelist R;

};

…or apply a meta-function to the marked items, or whatever.

Set Union Redux
Earlier, we examined the implementation of a set union algorithm, SetUnionEquiv,
that employed a user-supplied comparator. However, that implementation of set cannot
(easily) be used to union two typelists based on the traditional notion of set union; that is,
that the resultant set would have no duplicate types, but also that no unique type would be
omitted from the union. However, because the set of C++ types is not ordered
(implicitly, at compile time) it is not (easily) possible to construct an appropriate
comparator for SetUnionEquiv. Instead, let’s write a special-purpose version of set
union. Recall the implementation of SetUnionEquiv:

template <class TList1, class TList2,

 template <typename,typename> class Comp>

struct SetUnionEquiv {

 typedef typename Append<TList1,TList2>::R RR;

 typedef typename Sort<RR,Comp>::R SRR;

 UniqueEquiv<SRR,GenEquivalence<Comp>::template Equivalence>::R R;

};

The implementation of SetUnion should be similar:
template <class TList1, class TList2>

struct SetUnion {

 typedef typename Append<TList1,TList2>::R RR;

 typedef typename Sort<RR,???>::R SRR;

 typedef typename Unique<SRR>::R R;

};

However, we’ve run into a problem with Sort to which we alluded above. There is no
well-defined ordering on C++ types, so we have to find some other mechanism to bring
equivalent types into adjacency so that they can be eliminated with Unique.

One approach might be to abandon the notion of sorting the typelist, instead “clumping
together” equivalent types based on an equivalence relation:

template <class TList, template <typename,typename> class Eq>

struct Clump;

We can implement the clumping functionality in a straightforward fashion by marking
sets of equivalent types, extracting them from the typelist, purging them from the typelist,
and continuing until there are no types left to mark.

template <typename Head, class Tail,

 template <typename,typename> class Eq>

struct Clump<typelist<Head,Tail>,Eq> {

 typedef typelist<Head,Tail> Orig;

 typedef typename MarkList<Orig,

Once, Weakly: Typelist Meta-Algorithm Implementation
Tricks

Page 7 of 9

 Bind1st<Eq,Head>::template Adapted>::R HeadMarks;

 typedef typename ExtractList<Orig,HeadMarks>::R HeadList;

 typedef typename PurgeList<Orig,HeadMarks>::R TailPurged;

 typedef typename Clump<TailPurged,Eq>::R TailList;

 typedef typename Append<HeadList,TailList>::R R;

};

template <template <typename,typename> class Eq>

struct Clump<null_typelist,Eq> {

 typedef null_typelist R;

};

Now that we have an implementation of Clump, we can rid ourselves of Sort in the
implementation of SetUnion:

template <class TList1, class TList2>

struct SetUnion {

 typedef typename Append<TList1,TList2>::R RR;

 typedef typename Clump<RR,IsSame>::R SRR;

 typedef typename Unique<SRR>::R R;

};

Other Algorithms
Similar techniques are used to implement other meta-algorithms, and the
implementations for the following are available at present on Semantics’ code page.7
(They’ll eventually find their way into the Tyr library.8)

template <class TList, typename T>

struct Find;

template <class TList, template <class> class Pred>

struct FindIf;

template <class Tlist, typename T>

struct Count;

template <class Tlist, template <class> class Pred>

struct CountIf;

template <class TList>

struct Unique;

template <class TList, template <class,class> class BPred>

struct UniqueEquiv;

template <class TList, template <typename> class Op>

struct Transform;

template <class TList1, class TList2,

7 http://www.semantics.org/code.html
8 http://www.semantics.org/tyr.html

Once, Weakly: Typelist Meta-Algorithm Implementation
Tricks

Page 8 of 9

 template <typename,typename> class Op>

struct Transform2;

template <class TList, template <typename> class Pred,

 template <typename> class Op>

struct TransformIf;

template <class TList, template <typename> class Pred>

struct EraseIf;

template <class TList, template <class,class> class Comp>

class Sort;

template <class TList>

struct Rotate;

template <class TList, int n>

struct RotateN;

template <class TList, template <typename,typename> class Comp>

struct MinElement;

template <class TList, template <typename,typename> class Comp>

struct MaxElement;

template <class TList1, class TList2,

 template <typename,typename> class Comp>

struct EqualIf;

template <class TList1, class TList2>

struct EqualSame;

template <int n, typename T>

struct FillN;

template <class TList, typename S, typename T>

struct Replace;

template <class TList, template <typename> class Pred, typename T>

struct ReplaceIf;

template <class TList1, class TList2,

 template <typename,typename> class Comp>

struct Merge;

template <class TList1, class TList2,

 template <typename,typename> class Comp>

struct SetUnionEquiv;

template <class TList1, class TList2>

struct SetUnion;

template <class TList1, class TList2>

struct SetIntersection;

template <class TList1, class TList2>

struct SetDifference;

template <class TList1, class TList2>

struct SetSymmetricDifference;

Once, Weakly: Typelist Meta-Algorithm Implementation
Tricks

Page 9 of 9

Copyright © 2004 by Stephen C. Dewhurst

