
Once, Weakly:  Checked Bridge Protopattern 

Page 1 of 6  

Checked Bridge    Object Structural 
Intent 
Allow different versions of Bridge interfaces and implementations to work together. 

Motivation 
When the Bridge pattern is used with different versions of software that are distributed at 
different times, it is often the case that the interface part of the Bridge may be paired with 
an implementation part that was developed for an earlier or later version of the interface.  
The Checked Bridge pattern shows how to export the implementation requirements of an 
interface to potential implementations, and perform a fine-grain capability query to 
ensure that a particular aspect of an interface’s functionality is supported by its 
implementation. 

Applicability 
Use a Checked Bridge when an application may be composed of many components that 
are “discovered” at runtime, and may have been developed to somewhat different sets of 
interface requirements.  Checked Bridge may also be used to permit safe, planned 
extension of capability without requiring older components to be replaced. 

Structure 
 

 

Consequences 
Checked Bridge is more flexible than a traditional Bridge in that interface and 
implementation do not have to match up precisely. 

Abstraction
func1() 

func2() 

func3() 

Implementor

Func1
func1() = 0

Func2
func2() = 0

Func3
func3() = 0 

Implementation
func1() 

func3()



Once, Weakly:  Checked Bridge Protopattern 

Page 2 of 6  

Checked Bridge employs a runtime capability query on its implementation, and may 
therefore be slower than a traditional Bridge implementation. 

Checked Bridge permits wide leeway in independent modification of implementations 
and interfaces over time, but assumes that an interface member function with a particular 
identifier and argument types will have the same abstract meaning in all interfaces and 
implementations.  For instance, a user of a Checked Bridge could run into trouble if a 
“draw” function (meaning to render something to the screen) were added to an interface, 
a separate “draw” function (meaning to brandish a firearm) were added to an 
implementation, and the two matched at runtime. 

Implementation and Sample Code 
The interface part of the Checked Bridge (Abstraction) is defined in the usual way.  
The interface refers to its implementation through a pointer to an appropriate 
implementation (Implementor): 

class Abstraction { 

public: 

 Abstraction(); 

 ~Abstraction(); 

 void f(); 

 int g(int); 

 virtual void h(); 

 

 struct F { virtual void f() = 0; }; 

 struct G { virtual int g(int) = 0; }; 

 struct H { virtual void h() = 0; }; 

 struct Implementor { virtual ~Implementor() {} }; 

protected: 

 Implementor *getImpl() 

  { return i_; } 

private: 

 Implementor *i_; 

}; 

However, the implementation of a Checked Bridge has a different structure from that of a 
traditional Bridge.  Here, we know only that the implementation is derived from the 
polymorphic abstract base Implementor.  The interface class also defines a set of 
capability interface classes in one-to-one correspondence with the functions that form its 
public interface.  For example, in the code above, the member function declared 

int g(int); 

has an accompanying capability class: 
struct G { virtual int g(int) = 0; }; 

The capability class contains a single pure virtual function with the same signature and 
return type as its corresponding interface member function; that is, 
Abstraction::G::g has the same signature and return type as Abstraction::g.  



Once, Weakly:  Checked Bridge Protopattern 

Page 3 of 6  

The set of capability classes defined by the interface specifies a set of capabilities that the 
interface would like—but not require—its implementation to provide. 

An implementation of the interface specifies that it is an implementation of 
Abstraction by derivation from Abstraction::Implementor, and precisely 
what functionality it implements by derivation from the appropriate capability classes. 

struct Implementation : // this implementation… 

 public Abstraction::Implementor, // implements Abstraction, 

 public Abstraction::F,  // handles f, 

 public Abstraction::H,  // handles h, and 

 public Abstraction::G {  // handles g 

 void f() 

  { cout << "called f" << endl; } 

 int g( int a ) 

  { cout << "called g: " << a << endl; return a; } 

 void h() 

  { cout << “called h” << endl; } 

}; 

Unlike a traditional Bridge implementation, the implementations of the interface’s 
member functions are defined with the interface, rather than with the implementation.  
(Because the implementation is accessed through the Abstraction::Implementor 
interface class, the user of the Checked Bridge is still protected from implementation 
changes.)  The interface-side functions perform a capability query on the implementation 
to ensure that their functionality is supported before forwarding the call: 

int Abstraction::g( int a ) { 

 G * const gp = dynamic_cast<G *>(i_); // capability query 

 if( !gp )     // if impl doesn’t support 

  throw MissingImpl( "g" );  // let user know 

 return gp->g( a );   // else forward to impl 

} 

To see the utility of Checked Bridge, consider the case where the interface and 
implementation are out of sync.  This is a common situation in software that is distributed 
or updated in pieces.  For example, a newer module written to an updated interface may 
attempt to use a facility not supported by an earlier version of an implementation. 

struct OldImplementation : // this implementation… 

 public Abstraction::Implementor, // implements Abstraction, 

 public Abstraction::F,  // handles f, 

 /* NOTE: no H! */   // DOES NOT handle h, and 

 public Abstraction::G {  // handles g 

 void f() 

  { cout << "called f" << endl; } 

 int g( int a ) 

  { cout << "called g: " << a << endl; return a; } 

}; 



Once, Weakly:  Checked Bridge Protopattern 

Page 4 of 6  

A user of the Checked Bridge can work with out-of-sync implementations without 
disastrous results: 

try { 

 Abstraction a; 

 a.f(); 

 a.g(12); 

 a.h(); 

} 

catch( MissingImpl &m ) { 

 cout << "Called unknown function: " << m.what() << endl; 

} 

Caching Queries 

The use of a dynamic_cast can be expensive for repeated calls.  If the implementation 
is to remain the same for the life of the interface, the result of the capability query can be 
cached: 

int Abstraction::g( int a ) { 

 static G * const gp = dynamic_cast<G *>(i_); // cache result 

 if( !gp ) 

  throw MissingImpl( "g" ); 

 return gp->g( a ); 

} 

Thread-safe caching can be attempted with the Double-Checked Locking pattern 
(although this approach has been declared to be “broken”1). 

void Abstraction::f() { 

 static F *fp = 0; 

 static volatile bool set = false; 

 if( !set ) { 

  Mutex m; // get a mutex 

  if( !set ) { 

   fp = dynamic_cast<F *>(i_); 

   set = true; 

  } 

 } 

 if( !fp ) 

  throw MissingImpl( "f" ); 

 fp->f(); 

} 

                                                 
1 The "Double-Checked Locking is Broken" Declaration, 
http://www.cs.umd.edu/~pugh/java/memoryModel/DoubleCheckedLocking.html. 



Once, Weakly:  Checked Bridge Protopattern 

Page 5 of 6  

Nested Classes 

The use of nested classes to define the capability classes helps to avoid name conflicts 
with other interface classes with similar interfaces. 

Selecting an Implementation 

Typically, we would not expect the user on the interface side of a Checked Bridge to 
select an implementation directly.  Typically, there would be a number of candidate 
implementations, the most appropriate of which would be selected dynamically. 

The capability query interface can also be used to select an implementation that supports 
a minimal functionality required by the interface’s user. 

inline bool 

Abstraction::isAdequate( const Implementor *i ) { 

 return  // this Abstraction requires support of 

  dynamic_cast<const F*>(i) && // f and 

  dynamic_cast<const H*>(i); // h 

} 

Naming Conventions 

Use of naming conventions for capability class names is important for clarity.  The 
approach used above that employs nested capability classes with the “same” identifier (up 
to capitalization or some other trivial transformation) of the function they represent is 
probably best.  It’s probably also a good idea to give the pure virtual function within the 
capability class the same name as the member function it represents. 

It’s probably simplest to avoid overloaded functions in the interface.  However, 
overloaded functions in the interface may be accommodated through use of a capability 
class name that encodes the signature of its corresponding member function.  (Cf. the 
traditional use of “name mangling” by C++ compilers to distinguish overloaded function 
names.) 

Default Implementations 

The interface class can provide a default implementation of the interface function (rather 
than simply throwing an exception) in the event the implementation does not support that 
function. 

Use of Derivation 

As with the traditional Bridge approach, we can also derive from an interface: 
class RefinedAbstraction : public Abstraction { 

public: 

 void i(); // new member function 

 void h(); // overrides base virtual 

 struct I { virtual void i() = 0; }; 

 struct H { virtual void h() = 0; }; 

}; 



Once, Weakly:  Checked Bridge Protopattern 

Page 6 of 6  

Of course, an overriding derived class function like RefinedAbstraction::h will 
expect a corresponding implementation on the implementation side of the Checked 
Bridge; that is, the implementation of RefinedAbstraction::h will not be found 
(since we’re casting to RefinedAbstraction::H, not Abstraction::H), and 
you’ll get a “not implemented” exception if you call RefinedAbstraction::h with 
the Implementation implementation above.  It’s necessary to supply a different 
implementation: 

struct RefinedImplementation : 

 public Implementation, 

 public RefinedAbstraction::I, 

 public RefinedAbstraction::H { 

 void i() { cout << "called derived i" << endl; } 

 void h() { cout << "called derived h" << endl; } 

}; 

Note that an implementation may be derived from an existing implementation, as 
RefinedImplementation has done above. 

Related Patterns 
The structure of Checked Bridge is basically a Bridge, with a fine grain check on the 
capability of the implementation. 

The use of multiple inheritance of capability interface classes and accompanying 
capability query is reminiscent of the structure of Acyclic Visitor. 

 
Copyright © 2003 by Stephen C. Dewhurst 

 


