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Typelist Meta-Algorithms 
 

The other day I was reading Andrei Alexandrescu’s clever implementation of an ad hoc 
Visitor that I had unaccountably overlooked when it first appeared.  (See “Typelists and 
Applications,” Andrei’s February 2002 installment of his Generic<Programming> online 
column for The C/C++ Users Journal.1)  The implementation uses a compile time 
traversal of a typelist to avoid many—though far from all—of the problems associated 
with nested if-statements whose conditions are dynamic_casts.  That is, code like the 
following 

Shape *s = get_a_Shape_of_some_kind(); 

if( Circle *c = dynamic_cast<Circle *>(s) { 

 do something… 
} 

else if( Ellipse *e = dynamic_cast<Ellipse *>(shape) ) { 

 do something; 
} 

else if( Square *s = dynamic_cast<Square *>(shape) ) { 

 do something… 
} 

else if( Triangle *t = dynamic_cast<Triangle *>(shape) ) { 

 do something… 
} 

can be replaced by mechanism that effectively has the compiler write the nested if-
statements automatically based on the ordering of types in a typelist:2 

typedef // typelist containing the types of Shape we know about 

 typelist< Ellipse, 

 typelist< Circle, 

typelist< Square, 

typelist< Triangle, 

null_typelist> > > > Shapes; 

 

struct ShapeVisitor : AdHocVisitor<Shapes> { 

void visit( Circle * ); 

void visit( Ellipse * ); 

void visit( Square * ); 

void visit( Triangle * ); 

    }; 

                                                 
1 http://www.cuj.com/documents/s=7986/cujcexp2002alexandr/ 
2 I plan to discuss aspects of Andrei’s ad hoc Visitor in a future Once, Weakly, so I’m offering no 
explanation here as to the details of the implementation. 
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ShapeVisitor v; 

Shape *s = get_a_Shape_of_some_kind(); 

v.startVisit(s); 

Since the sequence of conditions tested depends on the order of the types in the typelist, 
it’s essential to make sure that the typelist (in the case above, Shapes) is properly 
ordered.  In the case of our ad hoc Shape Visitor, it’s essential that derived classes 
appear before their base classes in the typelist, so that the Shape object being processed 
will be associated with the most specific type on the typelist.  In the hand-coded version 
of the nested if-statement, this is done properly.  However, the Shapes typelist is not in 
the proper order, and a Circle object will be processed as an Ellipse rather than a 
more-specific Circle (assuming that Circle is derived from Ellipse). 

Andrei addresses this particular problem in his Modern C++ Design (MCD, p. 62) with 
an implementation of a compile time algorithm, DerivedToFront, that organizes a 
typelist so that derived classes appear before their base classes.  This can be used in the 
implementation of an ad hoc Visitor to ensure that its typelist is properly ordered: 

struct ShapeVisitor 

 : AdHocVisitor<DerivedToFront<Shapes>::Result> { // etc… 

This mechanism works well in this specific case, but it seems fairly clear that in other 
contexts we might want to perform different or more complex orderings and other 
manipulations on typelists. 

In fact Andrei (MCD, p. 62) mentions the possibility of using a sort of some kind on a 
typelist, but then dismisses the idea in favor of the more specific DerivedToFront.  
His decision was based on the observation that inheritance is not a total ordering 
relationship, and that there is no other equivalent for an operator < for types. 

In this installment of Once, Weakly, we’ll take up the subject of more general 
manipulations of typelists, based on the STL model of generic algorithms, but one step 
removed.  Meta-generic algorithms. 

Typelists in Five Words 
They’re structured pairs of types.  Here’s all you need to know: 

template <class H, class T> 

struct typelist { 

 typedef H head; 

 typedef T tail; 

}; 

class null_typelist {}; 

A typelist is a list of types that is recursively defined as a type followed by a typelist.  
The end of a typelist is signaled by the appearance of a null_typelist rather than an 
instantiated typelist.  Therefore the head of a typelist is any sort of type (possibly, 
but not typically, another typelist) and the tail of a typelist is either an instantiated 
typelist or null_typelist.  An empty typelist is represented by 
null_typelist.  Here are some example typelists: 
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typedef null_typelist TL1; // empty typelist 

typedef typelist<int,null_typelist> TL2; // 1-element typelist 

typedef typelist<string, 

 typelist<int,null_typelist> > TL3; // 2-element typelist 

typedef typelist<string,TL2> TL3; // same as previous 

Obviously, the hand-coding approach to typelist creation is tedious in the extreme, and 
there are several more convenient ways to construct them.  See Modern C++ Design and 
the “Typelists and Applications” article referenced earlier for several useful techniques. 

Typelists may be manipulated in various ways at compile time.  For example, we can 
calculate the length of a typelist with a simple “metaprogram”: 

template <class TList> 

struct Length; 

 

template <class T, class U> 

struct Length< typelist<T,U> > { 

 enum { r = 1 + Length<U>::r }; 

}; 

 

template <> 

struct Length<null_typelist> { 

 enum { r = 0 }; 

}; 

That is, the length of an empty typelist is 0, and the length of a non-empty typelist is 
recursively calculated as one plus the length of its tail.  Many basic typelist algorithms 
are implemented in a similar way, and you may find algorithms to in index, search, 
append, etc. typelists.  If you are unfamiliar with basic typelist manipulation, now would 
be a good time to read chapter 3 of Modern C++ Design, or have a look at the 
implementations of some of the typelist operations in the file typelist.h in the code 
that accompanies this installment of Once, Weakly.3 

Type Predicates and Comparators 
Many interesting generic algorithms on sequences require the ability to compare two 
elements of the sequence, or ask a yes/no question of a sequence element.  This is the 
case, for example, for the sort algorithm mentioned above. 

The STL generally uses function objects (though it may also use function pointers) to 
provide these capabilities.  Typically, a predicate or comparator is implemented as a class 
template that is instantiated and used to generate a function object, which is then passed 
as an argument to a generic function. 

                                                 
3 The implementation of all the facilities discussed here (and more) may be found at 
http://www.semantics.org/code.html, under the “Typelist Meta-Algorithms” heading. 
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We have to use a somewhat different approach to provide a compile-time “function 
object.”  Instead of instantiating our generic meta-algorithms with the type of a function 
object, we’ll instantiate it with the template of a meta-function object.  Where a runtime 
generic algorithm uses an object generated from a class type as a function object, our 
compile time meta-algorithms will use a class type generated from a class template as a 
“meta-function object.” 

For example, a simple meta-predicate that determines whether or not a particular type is 
double could be implemented as follows: 

template <class T> 

struct IsDouble { enum { r = false }; }; 

template <> 

struct IsDouble<double> { enum { r = true }; }; 

By convention (OK, my convention), the result of applying a predicate or comparator is a 
nested compile time value named r that is convertible to bool.  While an STL predicate 
provides an answer to a question about an object, a meta-predicate provides an answer to 
a question about a type. 

As in the STL, we may also consider comparators; a subset of binary predicates that 
implement a strict weak ordering.  As with meta-predicates, our meta-comparators 
implement an ordering on types, rather than objects: 

template <class A, class B> 

struct IsSmaller { 

 enum { r = sizeof(A) < sizeof(B) }; 

}; 

 

template <class A, class B> 

struct IsDerivedFrom { 

 enum { r = SUPERSUBCLASS_STRICT(A,B) }; // from MCD 

}; 

Using these meta-comparators, we can compare pairs of types based on their relative 
sizes of their objects, or on their inheritance relationship.  Note that the 
IsDerivedFrom comparator does not implement a total ordering on the set of types, 
since it’s possible (or likely) that two types have no inheritance relationship. 

Generic Typelist Algorithms 
Meta-predicates and comparators are most useful when used to parameterize meta-
generic algorithms.  For instance, we can use a meta-predicate to implement a partition 
algorithm on typelists: 

template <class TList, template <class> class Pred> 

struct Partition; 

 

template <template <class> class Pred> 

struct Partition<null_typelist,Pred> { 

 typedef null_typelist R; 
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 enum { r = 0 }; 

}; 

 
template <class Head, class Tail, template <class> class Pred> 

struct Partition<typelist<Head,Tail>,Pred> { 

 typedef typename Select< 

  Pred<Head>::r, 

  typelist<Head,typename Partition<Tail,Pred>::R>, 

  typename Append<typename Partition<Tail,Pred>::R,Head>::R 

 >::R R; 

 enum { r = Partition<Tail,Pred>::r + Pred<Head>::r }; 

}; 

The Partition meta-algorithm on typelists performs in a similar fashion to the STL 
partition algorithm on sequences.  The nested type R is a copy of the original 
typelist, but reordered in such a way that all the types that satisfy the predicate occur 
before types that do not.  The index of the first type that does not satisfy the predicate is 
available in the nested value r. 

typedef Partition<ATypeList,IsDouble>::R Partitioned; 

const int index = Partition<ATypeList,IsDouble>::r; 

In the code snippet above, Partitioned is a reorganized version of ATypeList such 
that all the types that satisfy the predicate IsDouble (that is, all doubles) appear first, 
and index is the index of the first type in Partitioned that does not satisfy 
IsDouble (that is, is not double). 

In a similar fashion, we can perform a compile time sort of a typelist with the help of a 
meta-comparator: 

typedef Sort<ATypeList,IsSmaller>::R SortedSmaller; 

typedef Sort<ATypeList,IsDerivedFrom>::R SortedHier; 

The nested typename R is the reordered ATypeList, sorted according to the argument 
comparator.  SortedSmaller is sorted by the sizeof the type, and SortedHier 
gives a result similar to that of the DerivedToFront special-case algorithm mentioned 
above.4 

Meta-Function Adapters 
The STL includes the concept of function object adapters that can be used to modify and 
combine function objects to produce new function objects.  We can do the same with our 
meta-predicates and comparators through the use of meta-function adapters.  For 
example, we can negate the sense of a unary or binary meta-predicate: 

template <template <class> class X> 

struct Not1 { // negate a unary predicate 

                                                 
4 The code available on semantics.org gives implementations for Partition, Sort, and TransformIf 
algorithms. 
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 template <class A> 

 struct Adapted { 

  enum { r = !X<A>::r }; 

 }; 

}; 

template <template <class,class> class X> 

struct Not2 { // negate a binary predicate/comparator 

 template <class A, class B> 

 struct Adapted { 

  enum { r = !X<A,B>::r }; 

 }; 

}; 

Our meta-predicates are implemented as class templates, so the adapter must accept a 
template template parameter.  The result must be a template that can be instantiated with 
the same set of arguments as the original predicate.  This template is available (again, by 
my convention) as the nested template name Adapted. 

typedef Sort<ATypeList,Not2<IsSmaller>::Adapted>::R NotSmallerFirst; 

The typelist NotSmallerFirst contains the content of ATypeList sorted according 
to the >= operation on the type’s sizes.5 

As another example, it’s sometimes useful to be able to change a binary predicate into a 
unary predicate by binding one of its arguments to a fixed value, or in the case of our 
meta-predicates, to a fixed type: 

template <template <class,class> class X, class A> 

struct Bind1st { // bind the first type argument to A 

 template <class B> 

 struct Adapted { 

  enum { r = X<A,B>::r }; 

 }; 

}; 

 

template <template <class,class> class X, class B> 

struct Bind2nd { // bind the second type argument to B 

 template <class A> 

 struct Adapted { 

  enum { r = X<A,B>::r }; 

 }; 

}; 

This provides even more flexibility in composing complex predicates and comparators: 
typedef Partition< 

                                                 
5 No, this is not a strict weak ordering, and may cause some implementations of Sort to fail.  It just so 
happens that the Sort implemented here doesn’t mind. 



Once, Weakly:  Typelist Meta-Algorithms 

 - 7 - 

 ATypeList, 

 Not1<Bind2nd<IsSmaller,int>::Adapted>::Adapted 

>::R Partitioned2; 

The typelist Partitioned2 will be a reordering of ATypeList such that those types 
that are not smaller than an int will occur first. 

Exercise for the Reader:  TemplateLists 
An earlier Once, Weakly (“Type Structures,” 6 December 2002) discussed the design of 
templatelists, which are simply lists of templates analogous to the lists of types we’ve 
been discussing here.  An interesting exercise might be to extend the approach of this 
Once, Weakly to encompass templatelists, and see what effect this expanded use of 
template lists would have on the implementation of policy-based designs.  Just a 
suggestion. 
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