
Once, Weakly: A Matter of Judgment

 - 1 -

A Matter of Judgment

My new book, C++ Gotchas1, has had pretty positive reviews,2 but it contains one
section that seems to send most everyone into paroxysms of rage, including the reviewers
of the original manuscript. This is Gotcha #7, “Ignorance of Base Language Subtleties,”
in which the book discusses various lesser-known aspects of the C- like part of C++, and
demonstrates how these lesser-known facilities may be useful. Many reviewers have
taken such offense to my pointing out these potential uses of lower- level constructs that
they feel compelled to insert comments like “…a hideous code snippet from a C++
compiler…” or “This falls under my ‘stupid code tricks’ category.” in the middle of an
otherwise very positive review. 3 This week’s “Once, Weakly” is just a short note to
demonstrate why I’m right about this issue and everyone else is wrong. 4

Received Wisdom vs. Experienced Judgment
Many years ago, we learned that gotos were considered harmful, that one-entry-one-exit
structured programming was the true path to correct and maintainable software, and that
functional decomposition with stepwise refinement was the correct way to attack a
complex problem and render it into code. At the time it was very good advice, but like
most good advice about software engineering and coding, it had a limited shelf life as the
one-and-only way to do things. Not quite as many years ago, Kathy Stark and I wrote a
C++ programming text that contained the following observation:

No single paradigm is suitable for solving all programming problems well.
Programming requires engineering expertise but is not yet a science.
Programming techniques need to be applied flexibly, with an eye to how well they
suit the problem at hand. Blind application of the currently most popular
paradigm is never a substitute for careful examination and thoughtful abstraction
of a problem.5

That statement was made in reaction to the object-oriented frenzy of the time, when
managers quoted from The Structure of Scientific Revolutions6 (without having read it),
and ordinarily rational programmers were inclined to create hierarchies in which integers

1 Dewhurst, S.C. C++ Gotchas, Addison-Wesley 2003.
2 See, for example, Marc Briand’s review for C/C++ Users Journal at
http://www.cuj.com/webonly/2003/0305/web0305a/web0305a.htm
3 My favorite review of the book is actually the only negative one I’ve seen. It contains the line, “If anyone
in my design organization would use some of his suggested solutions I would firmly grab that person by the
neck and drag him to a place where he could straighten out paper clips instead of making code unreadable.”
Classic. The full review appears at the book’s page on amazon.com.
4 That statement, true though it may be, was intended as a joke.
5 Dewhurst, S.C. and Stark, K.T., Programming in C++, Prentice Hall, 1989, p. 3.
6 Kuhn, T.S., University of Chicago Press. The 3rd edition is current (1996), but the managers were quoting
from the 2nd edition (1970).

Once, Weakly: A Matter of Judgment

 - 2 -

and shapes shared a common base class. In effect, Kathy and I were suggesting that
earlier approaches still had application to real problems, and should be used in
conjunction with newer paradigms and techniques. We were suggesting that effective
programming requires that a programmer actually apply experience and judgment to the
problem at hand, selecting among various paradigms, idioms, and techniques for those
most suitable to solving the problem and, if necessary, abandon idiom for an effective
nonstandard solution. The existence of paradigm and idiom is of inestimable value to the
practice of programming, but it doesn’t absolve us completely from the necessity of
thinking.

Good Advice Doesn’t Always Scale Down
Therefore, the simple ideas behind 70’s-style structured programming still apply in
general. Code is generally more correct and easier to understand and maintain if control
flow constructs have a single point of entry and a single point of exit. This applies to
functions as well, and we generally prefer to enter at the top of a function body and exit
from the bottom. In particular, the use of multiple return statements within nested control
flow is nearly as bad as the use of gotos as far as complexity and maintenance are
concerned.

But times change. Increasing use of the object-oriented paradigm transfers much control
flow to the type system, through the use of dynamic binding. As a result, the average
length of a function in a well-designed object-oriented program has decreased
dramatically from that of a typical function produced as a result of functional
decomposition. Additionally, the presence of exceptions forces C++ programmers to
consider every explicit or implicit function call a potential alternative return from a
function. Smaller function length renders multiple-path control flow less damaging,
because if the entire function implementation is in view, even nonstandard control
structures are obvious. Indeed, adhering to a piece of good, general advice can produce
bad effects in specific cases.

Name *lookup(SymbolTable &tab, const Key &id) {
 for(Iter i(tab); !i.done(); i.next())
 if(i.get()->id() == id)
 return i.get();
 return 0;
}

The code above violates a basic tenet of structured programming. However, application
of that general advice in this specific case results in code that is less clear, potentially less
efficient, and less likely to remain correct over time.

Name *lookup(SymbolTable &tab, const Key &id) {
 Iter i(tab);
 Name *result = 0;
 while(!i.done() && !result) {
 if(i.get()->id() == id)
 result = i.get();
 else

Once, Weakly: A Matter of Judgment

 - 3 -

 i.next();
 }
 return result;
}

What’s Everyone So Exercised About?
The example in C++ Gotchas that seems to bother people the most is an unusual—but
perfectly standard—use of the switch-statement. Here’s the offending code:

bool
Postorder::next() {
 switch(pc)
 case START:
 while(true)
 if(!lchild()) {
 pc = LEAF;
 return true;
 case LEAF:
 while(true)
 if(sibling())
 break;
 else
 if(parent()) {
 pc = INNER;
 return true;
 case INNER: ;
 }
 else {
 pc = DONE;
 case DONE: return false;
 }
 }
}

The switch-statement is actually a multiway goto based on the integral value in the
switch-expression, very similar to a FORTRAN computed goto and very unlike a Pascal
case. After the switch-statement branches to the appropriate case, its work is over. The
case labels may appear anywhere within the switch-statement, at any nesting depth. In
the code above, the statement into which we’re switching is a while-statement (rather
than the more typical block consisting of a number of statements enclosed in curly
brackets), and the case labels are distributed at various nesting depths within the while-
statement. This next function implements an external iteration of a complex tree

Once, Weakly: A Matter of Judgment

 - 4 -

structure. That is, each time next is called, it moves the current position of the
Postorder iterator to the following tree node in the postorder traversal sequence.7

In order to implement an external iteration, a Postorder iterator object has to keep
track of the state of the iteration between calls to next. This is a non-trivial task, and
there are a number of common ways to do this, including simulating nested function calls
in data by implementing a stack of function activation records, using an internal iteration
(that is, iterate through the entire tree in one function call) in order to thread the tree (that
is, build a linear data structure of pointers to the nodes of the tree, arranged in postorder
sequence). However, these approaches have associated costs in either complexity or
runtime.

What we really want here is a coroutine. In its simplest form, a coroutine can be
considered to be a kind of function that can return in the middle of its execution, and a
subsequent call to the function will continue execution where it left off. That is, a
coroutine can detach (leave off execution) and resume (pick up where it left off). On the
positive side, this approach allows us to implement the next algorithm in a
straightforward and efficient way. On the negative side, in order to implement the
coroutine semantics, we must embed our simple algorithm in a decidedly unstructured
switch-statement.8

However, I claim that this use of the switch-statement is preferable to any other approach.
It is certainly the most efficient. It is also the clearest, most maintainable, and best-
encapsulated approach. The other approaches to implementation of the coroutine- like
semantics for next require that significant structure be implemented for the
Postorder class that will affect nearly every aspect of its implementation. Such a
design decision introduces complexity not only in the use of the type, but also in all
future maintenance of any aspect of the type. The use of the unstructured switch-
statement is restricted to the implementation of a single function, and a short function at
that. The only individual who will come into contact with the switch-statement is the
maintainer of the Postorder class, and that only when the next algorithm changes.

In short, I feel that criticism of the next function is based more on a knee-jerk reaction
to the construct rather than a “careful examination and thoughtful abstraction of the
problem.”

Playing With Dolls
Another school of thought might permit the unstructured switch-statement provided that
it be suitable disguised. Typically, this involves reaching for a macro, or several macros:

#define CO_START switch(pc_.pc_){ case 0:;

7 The interested reader can find the source code for this example on the C++ Gotchas web site:
http://www.semantics.org/cpp_gotchas. Go to the “Code” section and look at the file
iter.cpp under Gotcha #7.
8 We don’t actually have to use a switch-statement, but it’s the simplest mechanism for our simple function.
A real coroutine framework would have to consider the problems imposed by multiple, recursive coroutine
instantiations.

Once, Weakly: A Matter of Judgment

 - 5 -

#define CO_END }
#define CO_IMPLEMENT struct PC_{ long pc_; PC_():pc_(0){} } pc_;
#define CO_DETACH(e) {pc_.pc_=__LINE__;return(e);case __LINE__:;}

The Postorder class would include a CO_IMPLEMENT in order to declare a “program
counter” data member, and the next function would take on a more structured
appearance.

bool
Postorder::next() {
 CO_START
 while(true)
 if(!lchild()) {
 CO_DETACH(true)
 while(true)
 if(sibling())
 break;
 else if(parent())
 CO_DETACH(true)
 else
 CO_DETACH(false) // !!!
 }
 CO_END
}

This approach reminds me of the medieval custom of practicing medicine on dolls so as
to avoid seeing exposed flesh. As might be expected, that approach to medicine often
resulted in faulty diagnoses. In our case, it has resulted in introduction of a few ad hoc
coding rules and a subtle change in semantics. The use of these macros requires that the
coder of a coroutine not follow the macros with a semicolon, and that a CO_DETACH not
appear on the same source line as another CO_DETACH. (Of course!) From a practical
perspective, we’ve traded a one- line comment that points out use of the unusual switch-
statement semantics for a page or so of mechanism and usage rules that serve only to
implement a single control construct in a single function.

The subtle change in semantics is indicated by the comment in the code above. The
original implementation of next allowed it to be called without error even after it had
reached the end of the iteration. This version does not, but the change in meaning is not
obvious, and is likely not documented.

In effect, use of these macros hides the truth from the maintainers of Postorder,
making the job of maintaining the code correctly that much less likely. We’ve made
things harder for maintainers, without any compensating merit for users of Postorder,
since users of Postorder never see the implementation of next.

Once, Weakly: A Matter of Judgment

 - 6 -

Experienced Judgment Beats Prejudice Every Time
The use of an unstructured switch-statement may not appeal to everyone’s aesthetic
sensibilities, but in this case I claim that it is the most practical approach to solution of a
bounded problem in the implementation of a single function. As I wrote in C++
Gotchas:

Effectively, while I do not recommend that this construct be commonly used, I
recommend that it be commonly known. It should be available to the expert C++
programmer for those rare occasions when its use is required or preferable to
other constructs. It’s part of the C++ language for a reason. 9

Copyright © 2003 by Stephen C. Dewhurst

9 C++ Gotchas, p. 16.

