Tutorial Corner: Introduction to Traits

Introduction to Traits

Knowing the type of an object allows you to find out alot about the object. For example,
you can determine if an object has a particular data or function member, the size of the
object, and so on. However, sometimes it’s not enough to know just an object’ s type.
Often, there isinformation related to the object’ s type that is essential to working with
the object.

Conventional Personal Information
For example, for a container type, we may want to know the type of the elements that the
container holds:
tenpl ate <typenane T>
class Seq {
...
b
At first, this may not seem to be a problem. The element type of Seq<st d: : stri ng>
isstd::string,right? Not necessarily. There s nothing to prevent the
implementation of our (nonstandard) sequence container from making the element type
const T,T *,or Count edPt r <T>. (A particularly weird container could simply
ignore the template parameter and always set the element typetovoi d *!) But vagary
of implementation is not the only reason we may not be able to determine the element
type of our container. We often write generic code in which that information is simply
not available.
tenpl at e <cl ass Cont ai ner >
El em process(Container &, int size) {
Tenmp tenp = Elen();
for(int i =0; i < size; ++i)
temp += c[i];
return tenp;

}

In the pr ocess generic algorithm above, we need to know the element type of
Cont ai ner , aswell as atype that could serve to declare atemporary for holding
objects of the element type, but that information is not available until the pr ocess
function template is instantiated with a specific container.

A common way to handle this situation is to have a type provide “personal” information
about itself. Thisinformation is often embedded in the type itself, rather like embedding
amicrochip in a person that can be queried for the person’s name, identifying number,
blood type, and so on.* We not interested in our sequence container’s blood type, but we
do want to know its element’ s type.

! Thisisan analogy, not asign of approval for general employment of such a procedure. Good object-
oriented designers employ analogy and metaphor to clarify their designs, but good human beings (no matter
how they feel about embedded microchips) know the difference between a computer program and reality.

-1-

Tutorial Corner: Introduction to Traits

tenpl ate <class T>
class Seq {
public:
typedef T Elem // elenent type
typedef T Tenp; // tenporary type
typedef T *Ptr; // a pointer to an el ement
size_t size() const;
/...
b
This information can be queried at compile time.
typedef Seq<std::string> Strings;
/...
Strings:: ElemaString;
Strings::Ptr pString = &aString;
More importantly, this approach allows us to write generic code that makes the
assumption that the required information is present.
tenpl ate <cl ass Cont ai ner>
typenane Contai ner:: El em process(Container &c, int size) {
typenane Container::Tenp tenp = typenanme Container::Elenm);
for(int i =0; i < size; ++i)
tenp += c[i];
return tenp;

}

Thepr ocess agorithm queriesthe Cont ai ner type for its personal information, and
makes the assumption that Cont ai ner defines the nested type names EI emand
Tenp 2

Strings strings;

aString = process(strings, strings.size()); [/ O

std::vector<std::string> strings2;

aString = process(strings2, strings2.size()); // error!

extern doubl e readi ngs[RSI Z] ;

double r = process(readings, RSIZ); // error!

Thepr ocess algorithm works well with our Seq container, but fails with a standard
vect or container, becausevect or does not define the nested type names that
process assumes are present.
However, we are able to process any container that follows our convention.

tenpl ate <typenane T>

2 Note that, due to the paucity of information about the Cont ai ner type, we had to usethet ypenane
keyword to tell the compiler explicitly that the nested names were type names and not some other sort of
nested name. This subject is covered in detail in the “Once, Weakly” of 11 March 2003.

-2-

Tutorial Corner: Introduction to Traits

cl ass Readonl ySeq {
public:
typedef const T El em
typedef T Tenp;
typedef AccessPtr<Elenms Ptr; // a smart pointer
/...
b
Wecan pr ocess aReadonl ySeq container because it validates our assumptions, but
we may aso want to pr ocess containers that do not follow our rather parochial

convention, and we may want to pr ocess container-like things that are not even
classes.

Traits
A traits classis a collection of information about atype. Unlike our nested container
information, however, the traits class is independent of the type it describes.

tenpl ate <typenane Cont>

struct ContainerTraits;

One common use of atraits classisto put a conventiona layer between our generic
algorithms and types that don’t follow the algorithms' expected convention. We write
the algorithm in terms of the type’ straits. The genera case will often assume some sort

of convention. Inthiscase, our Cont ai ner Tr ai t s will assume the convention used
by our Seq and Readonl ySeq containers.
tenpl ate <typenane Cont >
struct ContainerTraits {
typedef typenane Cont::El em El em
typedef typenane Cont:: Tenp Tenp;
typedef typenanme Cont::Ptr Ptr;
b
With the addition of this traits class template, we have the choice of referring to the
nested EI e mtype of one of our container types either through the container type or
through the traits type instantiated with the container type.
typedef Seqg<int> Cont;
Cont:: El em el;
ContainerTraits<Cont>::Eleme2; // sane type as el
We can rewrite our generic algorithm to employ traits in place of direct access to the
container’s nested type names.
tenpl ate <typenane Contai ner>
typenane Cont ai ner Trai t s<Cont ai ner >: : El em
process(Container &c, int size) {
typenane Cont ai ner Trai t s<Cont ai ner>:: Tenp tenp
= typenanme Cont ai ner Traits<Contai ner>:: El em()
for(int i =0; i < size; ++i)

-3-

Tutorial Corner: Introduction to Traits

tenp += c[i];
return tenp;

}

It may seem that all we' ve managed to do is to make the syntax of the generic pr ocess
algorithm even more impenetrable! Previoudly, to get the type of the container’s
element, we wrotet ypenanme Cont ai ner:: El em Putin plain language, we said,
“Get Cont ai ner’snested name El em By the way, it'satype name.” Now, we have
towritet ypenane Cont ai ner Trai t s<Cont ai ner >: : El em Essentidly, we
say, “Instantiate the Cont ai ner Tr ai t s classthat corresponds to this container, and
get its nested name El em By the way, it'satype name.” We ve essentialy taken a step
back from getting the information directly from the container type itself, and are going
through the intermediary of the traits class. If accessing nested type information is like
reading information about a person from an embedded microchip, using atraits classis
like looking up someone’s information in a database, using the person’s name as a key.
You'll get the same information, but the database lookup approach is certainly less
invasive and more flexible.

For example, you can’t get information from someone’s microchip if he doesn’'t have
one. Perhaps the person comes from a region where embedded microchips are not de
rigeur. However, you can always create a new entry in a database for such a person
without the necessity of even informing the individual concerned.® Similarly, we can
specialize the traits template to provide information about a particular non-conforming
container without affecting the container itself:
cl ass Forei gnCont ai ner {
/'l no nested type information...
b
...
tenpl ate <>
struct ContainerTraits<Forei gnContainer> {
typedef int Elem
typedef El em Tenp;
typedef Elem *Ptr;
b
With this specialization of Cont ai ner Tr ai t s available, wecan pr ocess a
For ei gnCont ai ner aseffectively as one that is written to our convention. The
origina implementation of pr ocess would have failed on aFor ei gnCont ai ner
because it would have attempted to access nested information that did not exist.
Forei gnContainer::Elemx; // illegal!
Cont ai ner Trai t s<Forei gnContai ner>:.:Elemy; // K

3 Remember, these are analogies, not suggested procedures.

-4-

Tutorial Corner: Introduction to Traits

It's helpful to think of atraits template as a collection of information that is indexed by a
type, much as an associative container is indexed by akey. But the “indexing” of traits
happens at compile time, through template instantiation.

Extending Utility
Another advantage of accessing information about a type through a traits classis that the
technique can be used to provide information about types that are not classes, and
therefore can have no nested information. Even though traits classes are classes, the
types whose traits they encapsulate don’'t have to be. For example, an array isakind of
degenerate container that we might like to manipulate as a container.
tenpl ate <>
struct ContainerTraits<const char *> {
typedef const char Elem
typedef char Tenp;
typedef const char *Ptr;
b
With this specialization in place for the “container” typeconst char *,wecan
process anarray of characters.*

const char *nane = “Arsene Lupin”;
const char *r = process(nane, strlen(name));

We can continue in this fashion for other types of arrays, producing specializations for
int *,const doubl e *,andsoon However, it would be more convenient to
specify asingle case for any type of pointer, since they al will have similar properties.
For this purpose, we employ partial specialization of the traits template for pointers.
tenpl ate <typenane T>
struct ContainerTraits<T *> {
typedef T Elem
typedef T Tenp;
typedef T *Ptr;
b
Instantiating Cont ai ner Tr ai t s with any pointer type, whether it bei nt * or
const float *(*const*)(int) will resultininstantiation of this partia
Specialization.
extern doubl e readi ngs[RSI Z] ;
double r = process(readings, RSIZ); // works!

WEe're not quite there yet, however. Notice that using the partial specialization for a
pointer to constant will not result in the correct type for use as a“temporary.” That is,
constant temporary values are not of much use because they cannot be assigned to, so
what we' d like is to have the non-constant analog of the element type as the type of a

* Note that we did not say pr ocess(“Arsene Lupin”, sizeof(“Arsene Lupin”’)-1).
See Vandevoorde & Jossutis, C++ Templates, p. 57.

-5-

Tutorial Corner: Introduction to Traits

temporary. Inthecaseof const char *,forinstance, Cont ai ner Tr ai t s<const
char *>:: Tenp shouldbechar,notconst char. We can handle this case with
an additional partial specialization:
tenpl ate <typenane T>
struct ContainerTraits<const T *> {
typedef const T El em
typedef T Tenp; // note: non-const anal og of El em
typedef const T *Ptr;
b
This more specific partial specialization will be selected in preference to the previous one
in those cases where the template argument is a pointer to constant, rather than a pointer
to non-constant.

Partial specialization can also help us to extend our traits mechanism to convert a
“foreign” convention to be in line with alocal convention. For example, the STL isvery
heavy on convention, and the standard containers have concepts similar to those
encapsulated in our Cont ai ner Tr ai t s, but are expressed differently. For example,
we earlier attempted to call the pr ocess agorithm with astandard vect or , but failed.
Let'sfix that.
tenpl ate <class T>
struct ContainerTraits< std::vector<T> > {
typedef typenane std::vector<T>::value_type Elem
typedef typenane
std::iterator_traits<typenane std::vector<T>:.:iterator>
::val ue_type Tenp;
typedef typenane
std::iterator_traits<typenane std::vector<T>::iterator>
.. pointer Ptr;
b
It's not the most readable implementation one can imagine, but it’s hidden, and our users
can now invoke our generic algorithm with a container generated from a standard
vector.
std::vector<std::string> strings2
aString = process(strings2, strings2.size()); // works!

More Traits

This discussion of traits has been heavy in its description of mechanism. In afuture
“Once, Weakly,” we'll consider other aspects of implementing and using traits, including
extended trait functionality and the use of traits in compile-time algorithm selection.

Copyright © 2003 by Stephen C. Dewhurst

