Tutorial Corner: What Are You, Anyway?

What Are You, Anyway?

Even experienced C++ programmers are often put off by the rather complex syntax
required to program with templates. Of all the syntactic gyrations one has to undertake,
none is more initially confusing than the occasional need to help the compiler
disambiguate a parse.

Types of Names, Names of Types

As an example, let’s ook at a portion of an implementation of a simple, non-standard
container template.
tenpl ate <typenane T>
class PtrList {
public:
/...
typedef T *El enfl;
void insert(Eleml);
private:
/...
b
It's common practice for class templates to embed information about themselves as
nested typenames.® This allows us to access information about the instantiated template
through the appropriate nested name.
typedef PtrlList<State> Statelist,
/...
StateList::Elemll currentState = O;

The nested name El el allows us easy accessto what the Pt r Li st template considers
to be its element type. Even though we instantiated Pt r Li st with the type name

St at e, theelement typeis St at e *. Inother circumstances, Pt r Li st could be
implemented with a smart pointer element type, or avery sophisticated implementation
of Pt r Li st might vary itsimplementation based on the properties of the type used to
instantiate it. Use of the nested type name helps to insulate users of Pt r Li st from
these internal implementation decisions.

Here' s another non-standard container:
tenpl ate <typenanme Etype>
cl ass SCol | ection {
public:
/...
typedef Etype El enf;
void insert(const Etype &);

L we'll have much more to say about thisin a future Tutorial Corner, aswell as mechanisms for accessing
such information in a flexible and extensible way.

Tutorial Corner: What Are You, Anyway?

private:
...
b
It appearsthat SCol | ect i on isdesigned according to the same set of naming standards
asPtrList,inthat it aso definesanested El enl type name. Adherenceto an
established convention is useful, because (among other advantages) it alows us to write
generic algorithms that work with a range of different container types. For example, we
could write a simple utility algorithm that fills a conforming container with the content of
an array of the appropriate element type:
tenpl ate <class Cont>
void fill(Cont &, Cont::Eleml a[], int len) { // error!
for(int i =0; i <len; ++i)
c.insert(al[i]);

}

Clueless Compilers

Unfortunately, we have a syntax error. The nested name Cont : : El emTl isnot

recognized as atype name! The trouble is that, in the context of thef i | | template, the
compiler does not have enough information to determine whether the nested name

El enil isatype name or anontype name. The standard says that in such situations, the
nested name is assumed to be a non-type name.

If at first this makes no sense to you, you're not alone. However, let’s see what
information is available to the compiler in different contexts. First, let’s consider the
situation in which we have a nontemplate class:
cl ass MyCont ai ner {
public:
typedef State El ent;
...
b
...
MyCont ai ner:: El eml' *anEl enPtr = O;

There's clearly no problem here, since the compiler can examine the content of the
My Cont ai ner class, verify that it has a member named El emT, and note that
My Cont ai ner : : El enmTl isindeed atype name. Things are just as simple for a class
that is generated from a class template.
typedef PtrlList<State> Statelist;
I ...
StatelList::Eleml aState = O;
PtrList<State>::Elenl anotherState = O;

To the compiler, an instantiated class template is just a class, and there is no differencein
the access of a nested name from the class type Pt r Li st <St at e> than there is from
My Cont ai ner . Ineither case, the compiler just examines the content of the class to
determine whether El enil is atype name or not.

-2-

Tutorial Corner: What Are You, Anyway?

However, once we enter the context of atemplate, things are different because thereis
less precise information available. Consider the following fragment:
tenpl ate <typenane T>
voi d aFuncTenplate(T &arg) {
.T::Eleni...

When the compiler encounters the qualified name T: : El eml, what does it know? From
the template header it knowsthat T is atype name of some sort. It can also guessthat T
is a class name because we' ve employed the scope operator (: :) to access a hested name
of T. But that's al the compiler knows, because there is no information available about
the content of T. For instance, we could call aFuncTenpl at e withaPt r Li st ,in
which case T: : EI eml would be atype name:

PtrList<State> states;

...

aFuncTenpl ate(states); // T::Elenml is PtrList<State>::El eml

But suppose we were to instantiate aFunc Tenpl at e with a different type?

struct X {
doubl e El eml
/...
b
X anX;
/...
aFuncTempl ate(anX); // T::Eleml is X :El enl

Inthiscase, T: : El enil isthe name of a data member; a nontype name. What'sa

compiler to do? The standard tossed a coin, and in cases where it can’t determine the
type of a nested name, the compiler will assume the nested name is a non-type name.

That is the cause of the syntax error inthef i | | function template above.

Clue In the Compiler
To deal with this situation, we must sometimes explicitly inform the compiler when a
nested name is a type name.

tenpl ate <typenane T>

void aFuncTemplate(T &arg) {

.typenane T::El enTl..

Here we've used the t ypenane keyword to tell the compiler explicitly that the
following qualified name is atype name. This allows the compiler to parse the template
correctly. Notethat we are telling the compiler that El el isatype name, not T. The
compiler can aready determine that T isatype name. Similarly, if we were to write

typenane A::B::C.:D.: E
we' d be telling the compiler that E is a type name.

Of course, if aFunc Tenpl at e isinstantiated with atype that does not satisfy the
requirements of the parsed template, it will result in a compile time error.

-3-

Tutorial Corner: What Are You, Anyway?

struct Z {
/1 no nenber naned El enfl...
b
Z az,
/...
aFuncTenpl ate(aZz); // error! no nmenber Z::El enil
aFuncTenpl ate(anX); // error! X :Elenl is not a type name
aFuncTenpl ate(states); // OK PtrList<State>: :Elenl is a type nane

Now we can rewritethef i | | function template to parse correctly:

tenpl ate <class Cont>
void fill(Cont &c, typenanme Cont::Eleml a[], int len) { // K
for(int i =0; i <len; ++i)
c.insert(a[i]);

}

Gotcha: Failure to Employ t ypenane with Permissive Compilers

Note that, while theuse of t ypenane isrequired to recognize a nested type name if the
compiler doesn’t have enough information, use of t ypenane outside of atemplateis
illegal.?
PtrList<State>::Elenl elem // K
typenane PtrList<State>::El eml elem // error!
Thisis a frequent source of errors when moving code from a “template” context to a non
template context and vice versa. For example, consider the use of atemplate that selects
one of two types at compile time based on a Boolean value:®
void f() {
Sel ect<cond,int,int *>:Rrl; // K
typenane Sel ect<cond,int,int *>:Rr2; // error!
...
}
Since the compiler has all the information about the template arguments available, there
isno need for, and it would beillegal to employ t ypenane beforethe Sel ect . If the
functionf isrewritten as a template, however, we may uset ypenamne evenif it is not
required.
tenpl ate <typenane T>
void f() {
Sel ect<cond,int,int *>:Rrl; // #1. OK, typenane not required
typenane Sel ect<cond,int,int *>:Rr2; // #2: superfluous
Sel ect<cond, T, T *>::R r3; // #3: error! need typenane
typenane Select<cond, T, T *>:Rr4; // #4: K

2 Thereistalk in the standards committee of easing this somewhat.

3 Thisis Andrei Alexandrescu’sSel ect template. See Modern C++ Design.

-4-

Tutorial Corner: What Are You, Anyway?

...
}
Note in case #2 above that t ypenane is not required, but is permitted.

The most problematic case is case #3, because many compilers will not diagnose the
error, and will interpret the nested name R as atype name. (Yes, it isatype name, but
it's not supposed to be parsed as atype name.) Later, when the code is ported to a
conforming compiler the error will be diagnosed. For this reason, when programming
with C++ templates, even if you must use a hon-conforming compiler, it’s often a good
idea to check your code with at least one highly conforming compiler.

Template Names in Templates

This parsing problem is not limited to nested type names, and we encounter a similar
situation with nested template names. Recall that a class or class template may have a
member that is a class or function template.

For example, in an earlier installment we discussed a protopattern that we called
Expanding Monostate.* The details of the implementation are not important, but note the
use of atemplate member functionin the NamedMonost at e class:
tenpl ate <typenane T, int n>
struct Nanme {
typedef T Type;

cl ass NanmedMonostate {
public:
tenpl ate <cl ass N>
typenane N.: Type &get() { // tenplate nmenmber function
static typename N:.:Type nenber;
return nenber;

b
The template member function is instantiated as needed:
typedef Nane<int, 86> grossAnpunt;
t ypedef Nanme<doubl e, 007> percent age;
NamedMbnostate nmil, nn2;
nml. get <gr ossAnmount >() = 12;
nnR. get <percentage>() = nnil. get<grossAmount>() + 12.2;
cout << nmil. get <grossAmount >() * nnR. get <percentage>() << endl;

In the code above, the compiler encounters no difficulty in determining that get isthe
name of atemplate. The objectsnml and nn? are of type NamedMonost at e, and the

% See “Once, Weakly” for 6 November 2002.

Tutorial Corner: What Are You, Anyway?

compiler has only to look up the name get in the class. However, consider writing a
generic function that could be used to populate an Expanding Monostate object.®
tenpl ate <typenane M>
voi d popul ate() {

M m
m get <gr ossAmount>(); // syntax error!
M*mp = &m

nmp- >get <per centage>(); // syntax error!

}
Once again, the problem is that the compiler knows nothing about the name Mexcept that
itisatype name. In particular, because it has no information about the member name
get of M it must assume that it is a nontype, nontemplate name. Therefore, the angle
brackets in the expression m get <gr ossAnount >() are parsed aslessthan and
greater-than operators, rather than as a template argument list.

The solution is to tell the compiler that the name get is atemplate name rather than
some other kind of name.

tenpl ate <typenanme M>
voi d popul ate() {

M m
m tenpl ate get <grossAmpunt>(); // OK
M*mp = &m

nmp- >t enpl at e get <percentage>(): // OK
}

Hideous, isrit it? Similar to the analogous use of t ypenane, this particular use of the
t enpl at e keyword is only necessary and legal within atemplate.

Hints For Rebinding Allocators

We can also encounter the same parsing problem with a nested class template. The
canonical example isin the implementation of an STL allocator.®
tenpl ate <class T>
class AnAll oc {
public:
I ...

® In point of fact, you probably wouldn’t want to do this, although popul at e isactually quite an
interesting function template from a philosophical point of view. It is created to force a number of template
instantiations, which is acompile time operation. So therereally isno need to actually call the function at
runtime. However, if the function isnot called, it will not be instantiated and the instantiations it provokes
will not be accomplished. One alternative might be to take the function’s address, rather than call it, or
perform an explicit instantiation of it.

8 If you're not familiar with STL allocators, don’t worry, be happy. Previous familiarity with them is not
necessary for following thisdiscussion. An allocator is a class type that is used to customize memory
management operationsfor STL containers. Allocators are typically implemented as class templ ates.

-6-

Tutorial Corner: What Are You, Anyway?

tenpl ate <class Ot her>
class rebind {
public:
typedef AnAl |l oc<Qt her> ot her;

...
s
The classtemplate AnAl | oc contains the nested namer ebi nd, which isitsdf aclass

template. It is used within the STL framework to create allocators “just like” the
allocator that was used to instantiate a container, but for a different element type. For

example:
typedef AnAlloc<int> Al; // original allocator allocates ints
typedef Al::rebind<doubl e>::other AD; // new one allocates doubles
typedef AnAll oc<double> AD; // legal! this is the sane type

It may look alittle odd, but using the r ebi nd mechanism allows one to create aversion
of an existing allocator for a different element type without knowing the type of the
allocator or the type of the element.

typedef SoneAl | oc::rebind<Li st Node>:: ot her NewAl | oc

If the type name SoneAl | oc followsthe STL convention for alocators, then it will
have anested r ebi nd classtemplate. Essentialy, we' ve said, “I don't know what kind
of dlocator thistypeis, and | dorit know what it alocates, but | want an allocator just
likeit that allocates Li st Nodesd!

This leve of ignorance usually occurs only within atemplate, where precise types and
values are not known until much later, when the template is instantiated. Consider the
implementation of an STL-compliant list container of some sort. The list template takes
two template arguments; anelement type (T), and an alocator type (A) that can allocate
elements. (Like the standard containers, our list provides a default allocator argument.)
tenplate < typenanme T, typenane A = std::allocator<T> >
class QurlList {
tenpl ate <typenane S>
struct Node {
...
b
typedef A::rebi nd< Node<T> >::other NodeAlloc; // error!
b
Asistypical for lists and other node-based containers, our list does not actually allocate
and manipulate Ts. Rather, it allocates and manipulates nodes that contain a member of
type T. Thisisthe situation we described earlier. We have some sort of alocator that
knows how to allocate objects of type T, but we want to allocate objects of type
Node<T>. However, when we attempt to r ebi nd, we get a syntax error.

Tutorial Corner: What Are You, Anyway?

Once again, the problem is that the compiler has no information about the type name A at
this point other than that it is a type name. The compiler has to make the assumption that
the nested namer ebi nd is a nontemplate name, and the angle bracket that follows is
parsed as aless-than. But our troubles are just beginning. Even if the compiler were able
to determine that r ebi nd is atemplate name, when it reached the (doubly) nested name
ot her , it would have to assume thet it's a non-type name! Time for some clarification.
The typedef must be written as follows:

typedef typenanme A::tenplate rebi nd< Node<T> >::other NodeAll oc;

The use of t enpl at e tellsthe compiler that r ebi nd is atemplate name, and the use of
t ypenanmne tellsthe compiler that the whole messrefers to atype name. Simple, right?

Copyright © 2003 by Stephen C. Dewhurst

