
Tutorial Corner: What Are You, Anyway?

 - 1 -

What Are You, Anyway?
Even experienced C++ programmers are often put off by the rather complex syntax
required to program with templates. Of all the syntactic gyrations one has to undertake,
none is more initially confusing than the occasional need to help the compiler
disambiguate a parse.

Types of Names, Names of Types
As an example, let’s look at a portion of an implementation of a simple, non-standard
container template.

template <typename T>
class PtrList {
 public:
 //…
 typedef T *ElemT;
 void insert(ElemT);
 private:
 //…
};

It’s common practice for class templates to embed information about themselves as
nested typenames.1 This allows us to access information about the instantiated template
through the appropriate nested name.

typedef PtrList<State> StateList;
//…
StateList::ElemT currentState = 0;

The nested name ElemT allows us easy access to what the PtrList template considers
to be its element type. Even though we instantiated PtrList with the type name
State, the element type is State *. In other circumstances, PtrList could be
implemented with a smart pointer element type, or a very sophisticated implementation
of PtrList might vary its implementation based on the properties of the type used to
instantiate it. Use of the nested type name helps to insulate users of PtrList from
these internal implementation decisions.

Here’s another non-standard container:
template <typename Etype>
class SCollection {
 public:
 //…
 typedef Etype ElemT;
 void insert(const Etype &);

1 We’ll have much more to say about this in a future Tutorial Corner, as well as mechanisms for accessing
such information in a flexible and extensible way.

Tutorial Corner: What Are You, Anyway?

 - 2 -

 private:
 //…
};

It appears that SCollection is designed according to the same set of naming standards
as PtrList, in that it also defines a nested ElemT type name. Adherence to an
established convention is useful, because (among other advantages) it allows us to write
generic algorithms that work with a range of different container types. For example, we
could write a simple utility algorithm that fills a conforming container with the content of
an array of the appropriate element type:

template <class Cont>
void fill(Cont &c, Cont::ElemT a[], int len) { // error!
 for(int i = 0; i < len; ++i)
 c.insert(a[i]);
}

Clueless Compilers
Unfortunately, we have a syntax error. The nested name Cont::ElemT is not
recognized as a type name! The trouble is that, in the context of the fill template, the
compiler does not have enough information to determine whether the nested name
ElemT is a type name or a non-type name. The standard says that in such situations, the
nested name is assumed to be a non-type name.

If at first this makes no sense to you, you’re not alone. However, let’s see what
information is available to the compiler in different contexts. First, let’s consider the
situation in which we have a non-template class:

class MyContainer {
 public:
 typedef State ElemT;
 //…
};
//…
MyContainer::ElemT *anElemPtr = 0;

There’s clearly no problem here, since the compiler can examine the content of the
MyContainer class, verify that it has a member named ElemT, and note that
MyContainer::ElemT is indeed a type name. Things are just as simple for a class
that is generated from a class template.

typedef PtrList<State> StateList;
//…
StateList::ElemT aState = 0;
PtrList<State>::ElemT anotherState = 0;

To the compiler, an instantiated class template is just a class, and there is no difference in
the access of a nested name from the class type PtrList<State> than there is from
MyContainer. In either case, the compiler just examines the content of the class to
determine whether ElemT is a type name or not.

Tutorial Corner: What Are You, Anyway?

 - 3 -

However, once we enter the context of a templa te, things are different because there is
less precise information available. Consider the following fragment:

template <typename T>
void aFuncTemplate(T &arg) {
 …T::ElemT…

When the compiler encounters the qualified name T::ElemT, what does it know? From
the template header it knows that T is a type name of some sort. It can also guess that T
is a class name because we’ve employed the scope operator (::) to access a nested name
of T. But that’s all the compiler knows, because there is no information available about
the content of T. For instance, we could call aFuncTemplate with a PtrList, in
which case T::ElemT would be a type name:

PtrList<State> states;
//…
aFuncTemplate(states); // T::ElemT is PtrList<State>::ElemT

But suppose we were to instantiate aFuncTemplate with a different type?
struct X {
 double ElemT;
 //…
};
X anX;
//…
aFuncTemplate(anX); // T::ElemT is X::ElemT

In this case, T::ElemT is the name of a data member; a non-type name. What’s a
compiler to do? The standard tossed a coin, and in cases where it can’t determine the
type of a nested name, the compiler will assume the nested name is a non-type name.
That is the cause of the syntax error in the fill function template above.

Clue In the Compiler
To deal with this situation, we must sometimes explicitly inform the compiler when a
nested name is a type name.

template <typename T>
void aFuncTemplate(T &arg) {
 …typename T::ElemT…

Here we’ve used the typename keyword to tell the compiler explicitly that the
following qualified name is a type name. This allows the compiler to parse the template
correctly. Note that we are telling the compiler that ElemT is a type name, not T. The
compiler can already determine that T is a type name. Similarly, if we were to write

typename A::B::C::D::E

we’d be telling the compiler that E is a type name.

Of course, if aFuncTemplate is instantiated with a type that does not satisfy the
requirements of the parsed template, it will result in a compile time error.

Tutorial Corner: What Are You, Anyway?

 - 4 -

struct Z {
 // no member named ElemT…
};
Z aZ;
//…
aFuncTemplate(aZ); // error! no member Z::ElemT
aFuncTemplate(anX); // error! X::ElemT is not a type name
aFuncTemplate(states); // OK. PtrList<State>::ElemT is a type name

Now we can rewrite the fill function template to parse correctly:
template <class Cont>
void fill(Cont &c, typename Cont::ElemT a[], int len) { // OK
 for(int i = 0; i < len; ++i)
 c.insert(a[i]);
}

Gotcha: Failure to Employ typename with Permissive Compilers
Note that, while the use of typename is required to recognize a nested type name if the
compiler doesn’t have enough information, use of typename outside of a template is
illegal. 2

PtrList<State>::ElemT elem; // OK
typename PtrList<State>::ElemT elem; // error!

This is a frequent source of errors when moving code from a “template” context to a non-
template context and vice versa. For example, consider the use of a template that selects
one of two types at compile time based on a Boolean value:3

void f() {
 Select<cond,int,int *>::R r1; // OK
 typename Select<cond,int,int *>::R r2; // error!
 //…
}

Since the compiler has all the information about the template arguments available, there
is no need for, and it would be illegal to employ typename before the Select. If the
function f is rewritten as a template, however, we may use typename even if it is not
required.

template <typename T>
void f() {
 Select<cond,int,int *>::R r1; // #1: OK, typename not required
 typename Select<cond,int,int *>::R r2; // #2: superfluous
 Select<cond,T,T *>::R r3; // #3: error! need typename
 typename Select<cond,T,T *>::R r4; // #4: OK

2 There is talk in the standards committee of easing this somewhat.
3 This is Andrei Alexandrescu’s Select template. See Modern C++ Design.

Tutorial Corner: What Are You, Anyway?

 - 5 -

 //…
}

Note in case #2 above that typename is not required, but is permitted.

The most problematic case is case #3, because many compilers will not diagnose the
error, and will interpret the nested name R as a type name. (Yes, it is a type name, but
it’s not supposed to be parsed as a type name.) Later, when the code is ported to a
conforming compiler the error will be diagnosed. For this reason, when programming
with C++ templates, even if you must use a non-conforming compiler, it’s often a good
idea to check your code with at least one highly conforming compiler.

Template Names in Templates
This parsing problem is not limited to nested type names, and we encounter a similar
situation with nested template names. Recall that a class or class template may have a
member that is a class or function template.

For example, in an earlier installment we discussed a protopattern that we called
Expanding Monostate.4 The details of the implementation are not important, but note the
use of a template member function in the NamedMonostate class:

template <typename T, int n>
struct Name {
 typedef T Type;
};

class NamedMonostate {
 public:
 template <class N>
 typename N::Type &get() { // template member function
 static typename N::Type member;
 return member;
 }
};

The template member function is instantiated as needed:
typedef Name<int,86> grossAmount;
typedef Name<double,007> percentage;
NamedMonostate nm1, nm2;
nm1.get<grossAmount>() = 12;
nm2.get<percentage>() = nm1.get<grossAmount>() + 12.2;
cout << nm1.get<grossAmount>() * nm2.get<percentage>() << endl;

In the code above, the compiler encounters no difficulty in determining that get is the
name of a template. The objects nm1 and nm2 are of type NamedMonostate, and the

4 See “Once, Weakly” for 6 November 2002.

Tutorial Corner: What Are You, Anyway?

 - 6 -

compiler has only to look up the name get in the class. However, consider writing a
generic function that could be used to populate an Expanding Monostate object.5

template <typename M>
void populate() {
 M m;
 m.get<grossAmount>(); // syntax error!
 M *mp = &m;
 mp->get<percentage>(); // syntax error!
}

Once again, the problem is that the compiler knows nothing about the name M except that
it is a type name. In particular, because it has no information about the member name
get of M, it must assume that it is a non-type, non-template name. Therefore, the angle
brackets in the expression m.get<grossAmount>() are parsed as less-than and
greater-than operators, rather than as a template argument list.

The solution is to tell the compiler that the name get is a template name rather than
some other kind of name.

template <typename M>
void populate() {
 M m;
 m.template get<grossAmount>(); // OK
 M *mp = &m;
 mp->template get<percentage>(); // OK
}

Hideous, isn’t it? Similar to the analogous use of typename, this particular use of the
template keyword is only necessary and legal within a template.

Hints For Rebinding Allocators
We can also encounter the same parsing problem with a nested class template. The
canonical example is in the implementation of an STL allocator.6

template <class T>
class AnAlloc {
 public:
 //…

5 In point of fact, you probably wouldn’t want to do this, although populate is actually quite an
interesting function template from a philosophical point of view. It is created to force a number of template
instantiations, which is a compile time operation. So there really is no need to actually call the function at
runtime. However, if the function is not called, it will not be instantiated and the instantiations it provokes
will not be accomplished. One alternative might be to take the function’s address, rather than call it , or
perform an explicit instantiation of it .
6 If you’re not familiar with STL allocators, don’t worry, be happy. Previous familiarity with them is not
necessary for following this discussion. An allocator is a class type that is used to customize memory
management operations for STL containers. Allocators are typically implemented as class templates.

Tutorial Corner: What Are You, Anyway?

 - 7 -

 template <class Other>
 class rebind {
 public:
 typedef AnAlloc<Other> other;
 };

 //…
};

The class template AnAlloc contains the nested name rebind, which is itself a class
template. It is used within the STL framework to create allocators “just like” the
allocator that was used to instantiate a container, but for a different element type. For
example:

typedef AnAlloc<int> AI; // original allocator allocates ints
typedef AI::rebind<double>::other AD; // new one allocates doubles
typedef AnAlloc<double> AD; // legal! this is the same type

It may look a little odd, but using the rebind mechanism allows one to create a version
of an existing allocator for a different element type without knowing the type of the
allocator or the type of the element.

typedef SomeAlloc::rebind<ListNode>::other NewAlloc;

If the type name SomeAlloc follows the STL convention for allocators, then it will
have a nested rebind class template. Essentially, we’ve said, “I don’t know what kind
of allocator this type is, and I don’t know what it allocates, but I want an allocator just
like it that allocates ListNodes!

This level of ignorance usually occurs only within a template, where precise types and
values are not known until much later, when the template is instantiated. Consider the
implementation of an STL-compliant list container of some sort. The list template takes
two template arguments; an element type (T), and an allocator type (A) that can allocate
elements. (Like the standard containers, our list provides a default allocator argument.)

template < typename T, typename A = std::allocator<T> >
class OurList {
 template <typename S>
 struct Node {
 //…
 };
 typedef A::rebind< Node<T> >::other NodeAlloc; // error!
};

As is typical for lists and other node-based containers, our list does not actually allocate
and manipulate Ts. Rather, it allocates and manipulates nodes that contain a member of
type T. This is the situation we described earlier. We have some sort of allocator that
knows how to allocate objects of type T, but we want to allocate objects of type
Node<T>. However, when we attempt to rebind, we get a syntax error.

Tutorial Corner: What Are You, Anyway?

 - 8 -

Once again, the problem is that the compiler has no information about the type name A at
this point other than that it is a type name. The compiler has to make the assumption that
the nested name rebind is a non-template name, and the angle bracket that follows is
parsed as a less-than. But our troubles are just beginning. Even if the compiler were able
to determine that rebind is a template name, when it reached the (doubly) nested name
other, it would have to assume that it’s a non-type name! Time for some clarification.
The typedef must be written as follows:

typedef typename A::template rebind< Node<T> >::other NodeAlloc;

The use of template tells the compiler that rebind is a template name, and the use of
typename tells the compiler that the whole mess refers to a type name. Simple, right?

Copyright © 2003 by Stephen C. Dewhurst

