
Tutorial Corner: Attack of the Clones

 - 1 -

Tutorial Corner: Attack of the Clones

Today I saw a newsgroup posting that asked the following question:

“What is the exact purpose of the clone() function? After all, it merely gets an
exact copy of the object at which its formal argument is pointing? What is it
going to do with a mere copy when it has the actual object to work with?”

This is a reasonable and common question. It does seem rather counter intuitive to have
to implement such an operation, but many times you can actually have the ability to point
to something without actually knowing precisely what it is you’re pointing to. However,
the situation is such that, whatever it is you’re pointing to, you want another one just like
it! Let’s look at an analogous real world situation.

Anything but Lutfisk
Suppose you find yourself in a Swedish restaurant, and you’d like to order a meal.
Unfortunately, your knowledge of Swedish is limited to technical correspondence,
cursing, or (typically) a combination of the two. The menu is in Swedish, and you can’t
read Swedish, but you do notice a gentleman on the other side of the room who is really
enjoying his meal. Therefore, you call over the waiter and say:

If that gentleman is having fish, I’d like fish. If he’s having spaghetti, I’d like
spaghetti too. Otherwise, if he’s having eel, then eel it is. However, if he’s
decided on the preserved kumquats, then I’ll have that.

Does this sound reasonable? Of course not. (For one thing, you probably don’t want to
order spaghetti in a Swedish restaurant.) There are two basic problems with this
procedure. First, it’s tedious and inefficient. Second, it can fail. What would happen if
you come to the end of your sequence of questions and you still haven’t been able to
guess what the other diner is eating? The waiter will walk off, leaving you stranded and
hungry. Even if you do happen to know the entire content of the menu, and are therefore
guaranteed of (eventual) success, if the menu is modified between your visits to the
restaurant, your list of questions may become invalid or incomplete.

The proper approach, of course, is simply to call the waiter over, and say:

I’d like what that gentleman is having.

If the waiter is a literalist, he’ll snatch up the other diner’s half- finished meal and bring it
to your table. However, that sort of behavior can lead to hurt feelings and even a food
fight. This is the sort of unpleasantness that can occur when two diners try to consume
the same meal at the same time. If he knows his business, the waiter will deliver an exact
copy of the other diner’s meal to you, without affecting the state of the meal that is
copied.

These are the two major reasons for cloning; you must or you prefer to remain in
ignorance about the precise type of object you’re dealing with, and you don’t want to
effect change or be affected by changes the original object.

Tutorial Corner: Attack of the Clones

 - 2 -

Virtual Constructors and Prototypes
A member function that provides the ability to clone an object is traditionally called a
“virtual constructor” in C++. Of course, there are no virtual constructors, but producing a
copy of an object often involves indirect invocation of its class’s copy constructor
through a virtual function, giving the effect—if not the reality—of virtual construction.
More recently, this approach has been called an instance of the Prototype pattern. 1

Of course, we do have to know something about the object to which we refer. In our
case, we know that what we want is-a meal.

class Meal {
 public:
 virtual ~Meal();
 const string &id() const;
 virtual void eat() = 0;
 virtual Meal *clone() const = 0;
 //…
};

The Meal type provides the ability to clone with the clone member function. The
clone function is actually a rather specialized kind of Factory Method2 that
manufactures an appropriate product while allowing the invoking code to remain in
ignorance of the exact type of context and product class. Concrete classes derived from
Meal (that is, those meals that actually exist and are listed on the menu) must provide an
implementation of the pure virtual clone operation. 3

class Lutfisk : public Meal, private Punishment {
 public:
 Lutfisk(const Lutfisk &);
 void eat();
 Lutfisk *clone() const;
};
class Spaghetti : public Meal {
 public:
 Spaghetti(const Spaghetti &);
 void eat();
 Spaghetti *clone() const;

1 The reference is, of course, Design Patterns, Gamma et al., p. 117. Kevlin Henney has told me that the
virtual constructor idiom is very different from the Prototype pattern, but I don’t see a significant
difference. However, one must always take Kevlin seriously.
2 Ibid., p. 107.
3 Notice the use of the covariant return type in the overriding derived class function. Even though the
overridden base class virtual function Meal::clone returns a Meal *, it is legal for
Lutfisk::clone to return a Lutfisk *. See C++ Gotchas, p. 228 for more detail. Note that some
outdated but commonly used versions of C++ compilers do not support covariant return types. If yours
doesn’t, just have Lutfisk::clone return a Meal *.

Tutorial Corner: Attack of the Clones

 - 3 -

//…
Lutfisk *Lutfisk::clone() const
 { return new Lutfisk(*this); }
Spaghetti *Spaghetti::clone() const
 { return new Spaghetti(*this); }

With this simple framework in place, we have the ability to produce an exact copy of any
type of Meal without precise knowledge about the actual type of the Meal we’re
copying. In the code below, note that there is no mention of concrete derived classes, and
therefore no coupling of the code to any current or future types derived from Meal.

Meal *m = thatGuysMeal(); // whatever he’s having…
Meal *myMeal = m->clone(); // …I want one too!

In fact, we could end up ordering something that we’ve never even heard of. In effect,
with Prototype, ignorance of the existence of a type is no barrier to creating an object of
that type. The “generic” code above can be compiled and distributed, and later be
augmented with new types of Meal without the need for recompilation.

Ignorance is Bliss
This somewhat silly example serves to illustrate some of the advantages of ignorance in
software design, particularly in the design of software structured as a framework that is
designed for customization and extension: The less you know, the better.

For example, consider a very simple GUI framework cons isting of a button type and a
callback action that is executed if the button is pressed. For flexibility, we implement the
action as a function object. That is, rather than use a function pointer to indicate what
action to execute when the button is pressed, we use a class object that stands in place of
a function. The framework code looks like this:

class Action {
 public:
 virtual ~Action();
 virtual void operator ()() = 0;
};

class Button {
 public:
 Button(const char *label);
 ~Button();
 void press() const;
 void setAction(Action &);
 private:
 std::string _label;
 Action *_action; // doesn’t own, problematic…
};

Button::Button(const char *label)

Tutorial Corner: Attack of the Clones

 - 4 -

 : _label(label), _action(0) {}

void Button::setAction(Action &action)
 { _action = &action; } // problematic…

void Button::press() const
 { if(_action) (*_action)(); }

This code will work, in that we can derive new types of action from Action and attach
them to Buttons, while leaving Button and Action in ignorance of these new
Action types. For instance, we could choose to do nothing at all:4

class NullAction : public Action {
 public:
 void operator ()()
 {}
};

Or we could decide to attract attention if a button is pressed.
struct Beep : public Action {
 public:
 void operator ()()
 { std::cout << ‘\a’ << std::flush; }
};

Or we could decide to execute a tree of actions:5
class Macro : public Action {
 public:
 ~Macro();
 void add(Action *a)
 { _a.push_back(a); }
 void operator ()() {
 for(std::list<Action *>::iterator i(_a.begin());
 i != _a.end(); ++i)
 (**i)();
 }
 private:
 std::list<Action *> _a;
};

Given the above, we can set an action to be executed when a button is pressed:

4 This is an instance of the Null Object pattern. See, for example, http://www.two-
sdg.demon.co.uk/curbralan/papers/europlop/NullObject.pdf
5 This is an instance of the Composite pattern. See GOF, p. 163. We can also decorate Actions with
application of a Decorator (GOF, p. 175), but enough is enough!

Tutorial Corner: Attack of the Clones

 - 5 -

// Initialize the button somewhere…
Button b(“Press Me”);
Macro m;
m.add(Beep());
m.add(NullAction());
m.add(Beep());
b.setAction(m);
//…
// Somewhere else entirely, press the button…
b.press(); // oops!

We have a problem. The problem is in the setting of the action in setAction.
Because it has no more specific information about the action other than that it is some
kind of Action, the Button has no choice but to simply set a pointer to the action.
Unfortunately, in the code above, the Action objects will have disappeared before the
button is pressed, and the Button will contain a bad pointer to Action. Another
problem could arise if multiple Button objects referred to the same Action object.

A better (or safer) implementation would allow an Action to be cloned, so that the
Button can have sole ownership and full control of its Action.

class Action {
 public:
 virtual ~Action();
 virtual void operator ()() = 0;
 virtual Action *clone() const = 0;
};

Now the button can choose to work with its own exact copy of the action, with
confidence that it will not disappear or be modified in the interim.6

class Button {
 public:
 //…
 void setAction(const Action &);
 private:
 std::string _label;
 Action *_action; // owns!
};

void Button::setAction(const Action &action) {
 Action *newAction = action.clone();
 delete _action;
 _action = newAction;

6 Thanks to Thorsten Ottosen for pointing out that an earlier version of this code was not exception safe in
the presence of a failed clone attempt.

Tutorial Corner: Attack of the Clones

 - 6 -

}

In effect, the button doesn’t know what kind of action has been passed to it, but it wants
another one just like it! Of course, the individual actions now have to know how to clone
themselves:

NullAction *NullAction::clone() const
 { return new NullAction; }

Macro *Macro::clone() const {
 std::auto_ptr<Macro> m(new Macro);
 for(std::list<Action *>::const_iterator i(_a.begin());
 i != _a.end(); ++i)
 m->add(**i);
 return m.release();
}

void add(const Action &a)
 { _a.push_back(a.clone()); }

An Old Prototype Trick
Occasionally, one hits on a design situation in which one is forced to write framework
code that can deal not only with types it knows nothing about, or types that didn’t exist
when the framework was compiled, but types that didn’t exist when the framework code
started executing.

The clone operation can help here if the object required can be specified by some sort of
identifier.7 All we have to do is populate a data structure with a set of prototypical
instances of the available types. For instance, we can represent the available choices on
the menu of a Swedish restaurant by a list of Meals:

This data structure can be searched at runtime for a meal that has the proper identifier. If
such a meal exists, it can be cloned.

7 Actually, by any set of requirements or set of questions one could pose to an object. That an object type
has a particular identifier is just a special case; it’s the requirement that the object can answer the question,
“Is your name X?” We could just as well have asked, “Are you something other than lutfisk?” or “Are you
commonly ordered by regular visitors to this restaurant?”

aList aListNode aListNode aListNode

 aMeal aMeal

aSalad

 aMeal

aLutfisk aPasta

Tutorial Corner: Attack of the Clones

 - 7 -

Meal *
giveMeSome(const string &id) {
 for(ListNode *m = aList; m; m = m->next)
 if(m->meal->id() == id)
 return m->meal->clone();
 return 0;
}

Note that the data structure may be populated with derived class objects explicitly in an
initialization phase, or implicitly using static or dynamic loading.8

Prototypes and Frameworks
A common problem in framework design concern the necessity of creating concrete
types, when the framework code has been written, compiled, and distributed long in
advance of the existence of the concrete types it must instantiate.

The clone operation/virtual constructor idiom/Prototype pattern is one common way of
dealing with this situation.

Copyright © 2003 by Stephen C. Dewhurst

8 When dynamic loading is used to add a new type to the data structure at runtime, the technique is often
called “dynamic inheritance.” It’s one of several ways to add a new type to an executing program.

Generic

Code Base

Der2 Der1

Product

Product2 Product1

aFramework

