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You Dis’n Me? 
 

In recent installments of this feature, we looked at the concepts of compile time data 
structures (6 December, “Type Structures”) and the prospect of dismantling to their 
constituent parts types generated from class templates (6 January, “Template 
Dismantling”).  In this installment, we’ll combine these two concepts as a first step on the 
way to a unified type-manipulation framework for use in template metaprogramming. 

Hammers and Rocks 
In template metaprogramming, we often have to make “adjustments” to a type before we 
can use it.  For example, we may have to adjust the type of container element to produce 
the correct type for use as a temporary: 

template <class Cont> 
void doItToCont( Cont &c ) { 
 DeConst<typename Cont::element_type>::R temp; 
 //… 
} 

Here, we’ve recognized that Cont (which we’re assuming to be some sort of container) 
may have constant elements.  In that event, a temporary would have to be the non-
constant analog of element_type.  To ensure this, we perform a small bit of type 
manipulation (with the DeConst template) to remove a top-level const qualifier if it’s 
present.1  I find this sort of operation analogous to working on an automobile engine.2  
Use of the DeConst type manipulation operation is similar to smacking an engine part 
with a hammer or, in a pinch, a rock (I speak from experience here) in order to make it fit 
the purpose for which you intend it, no matter what its manufacturer intended. 

Effective though that approach can be, it’s a bit heavy handed.  Additionally, every 
different “mechanic” will find different ways to accomplish similar ends.  Some prefer 
hammers, some prefer rocks.  (I knew one mechanic who could make parts fit by sheer 
force of language.)  Sometimes it’s best to go back to the shop manual, dismantle the 
engine, change a few parts, and put it back together correctly with a minimum of physical 
violence or verbal persuasion. 

Type Dismantling 
The first step in this process is the dismantling of a complex structure (whether it be a 
type or an engine) into its constituent parts.  However, the dismantling must be orderly so 
we don’t lose parts or switch them accidentally.  Since we’re working with types, we’ll 
employ the type list compile time list structure popularized by Andrei Alexandrescu:3 

                                                 
1 In fact, it would probably be better in this case to employ some sort of traits class to get the 
element_type of the container. 
2 Particularly the big-block Ford models of the late ‘70s. 
3 I’ve taken a few liberties here, but this is still the basic Alexandrescu type list.  See Modern C++ Design. 
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template <typename T, class U> 
struct TList { 
 typedef T Head; 
 typedef U Tail; 
}; 
 
typedef struct {} NullTList; 

A type list is just a sequence of types terminated with a NullTList.  The structure is 
recursively defined, so that a type list is either a NullTList, or a pair consisting of a 
type and a type list.4 

To dismantle a type, we examine how it’s constructed and string its constituent parts on a 
type list.  The catchall simply creates a one-element type list: 

template <typename T> 
struct Dis { 
 typedef TList<T,NullTList> R; 
}; 

This primary Dis template is used to record the base type of a (potentially) complex 
type.  We’ll see later how we can customize this template to additionally dismantle 
complex base types, or special case for base types with particular properties. 

In order to record information about type modifiers in a type list, we create types that 
represent modifiers. 

struct Const {}; 
struct Volatile {}; 
struct Ref {}; 
struct Ptr {}; 

Once we have these representations available, we can partially-specialize Dis to 
recognize and dismantle modified types. 

template <typename T> 
struct Dis<const T> { 
 typedef TList<Const, typename Dis<T>::R> R; 
}; 
template <typename T> 
struct Dis<T *> { 
 typedef TList<Ptr, typename Dis<T>::R> R; 
}; 
template <typename T> 
struct Dis< T *const> { 
 typedef TList<Const, typename Dis<T *>::R> R; 
}; 

                                                 
4 See “Once, Weakly” for 6 December 2002. 
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For example, Dis<int * const>::R will produce the three-element type list 
[Const, Ptr, int].  Other modifiers are handled similarly, but are marginally 
more complex.  Array and pointer-to-data-member modifiers must encode their bound 
and class type information, respectively: 

template <int> 
struct Ary 
 {}; 
 
template <class> 
struct Pcm 
 {}; 

Dismantling these types is similar to dismantling a pointer type, above. 
template <typename T, int b> 
struct Dis<T[b]> { 
 typedef TList< Ary<b>,typename Dis<T>::R > R; 
}; 
 
template <class C, typename T> 
struct Dis<T C::*> { 
 typedef TList<Pcm<C>,typename Dis<T>::R> R; 
}; 

Therefore, the code Dis<const int X::* const>::R results in the type list 
[Const, Pcm<X>, Const, int].  Although we do not use this information right 
now, it may also be a good idea to provide the user of our type-dismantling framework 
more information about the Pcm modifier: 

template <class C> 
struct Pcm 
 { typedef typename Dis<C>::R Class; }; 

Note that, with this additional information recorded in the Pcm template, we now no 
longer have a simple linear type list, but a list of lists.  The function and pointer-to-
member-function modifiers are more complex, because they can take arguments:5 

struct Fun0 {}; 
 
template <typename A> 
struct Fun1 
 { typedef typename Dis<A>::R Arg; }; 
template <typename Ret> 
struct Dis<Ret(void)> { 

                                                 
5 Obviously, a lot of the implementation has been omitted here for reasons of space and tedium.  The full 
implementation (which will continue to evolve as I find time to work on it) is available on 
http://www.semantics.org/code.html. 
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 typedef TList<Fun0,typename Dis<Ret>::R> R; 
}; 
 
template <typename Ret, typename Arg> 
struct Dis<Ret(Arg)> { 
 typedef TList<Fun1<Arg>,typename Dis<Ret>::R> R; 
}; 

With this implementation of Dis in place, we can now dismantle an arbitrary type into 
its constituent parts: 

template <typename T> 
void aTemplateContext() { 
 typedef typename Dis<T>::R ExplodedT; 
 //… 

Type Regeneration 
Of course, a collection of piece parts, no matter how well organized, is not as useful as a 
functioning engine.  Therefore, we also have a facility to regenerate a “normal” type from 
a type list that contains a dismantled type. 

template <class T> 
struct Regen; 

We have no need of the implementation of the primary template, so we omit it.  The 
partial specializations of Regen handle the translation back to a normal type.  The 
inversion of the catchall case described above simply pulls the type out of the single-
element type list: 

template <typename T> 
struct Regen< TList<T,NullTList> > { 
 typedef T R; 
}; 

The other cases are pretty much what one would expect.  The regeneration process 
recursively regenerates the modified type, then attaches the appropriate modifier: 

template <class T> 
struct Regen< TList<Const,T> > { 
 typedef const typename Regen<T>::R R; 
}; 
template <class T> 
struct Regen< TList<Ptr,T> > { 
 typedef typename Regen<T>::R *R; 
}; 
template <class T, class C> 
struct Regen< TList<Pcm<C>,T> > { 
 typedef typename Regen<T>::R C::*R; 
}; 
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Now we have the ability to go back and forth between the normal and dismantled 
versions of a type. 

template <typename T> 
void aTemplateContext() { 
 typedef typename Dis<T>::R ExplodedT; 
 //… 
 typedef typename Regen<ExplodedT>::R TheSameT; 
 //… 

So What’s The Point? 
In effect, we now have two equivalent, but structurally distinct, versions of the same type.  
The normal version is optimized for use in a traditional fashion: accessing its operations, 
causing code to be generated tha t will execute at runtime, etc.  The dismantled version is 
optimized for compile time analysis and manipulation.  Therefore, we now have the 
ability to move an arbitrary type between representations according to how we want to 
use it.  The invertibility of the representations assures us that either representation will 
contain all the information present in the other. 

Domain-Specific Extension 
As we mentioned above, the primary Dis template is a catchall for any type not more 
specifically described by Dis’s partial specializations.  The existing partial 
specializations cover all possible type modifiers,6 so the catchall dismantles only base 
types.  However, we can be more selective.  For instance, we could decide to handle a 
particular base type or set of base types differently: 

struct Int 
{}; 

template <> 
struct Dis<int> { 
 typedef Tlist<Int,NullTList> R; 
}; 
template <> 
struct Regen< TList<Int,NullTList> >  { 
 typedef int R; 
}; 

These three new elements extend the framework to special case on int.  Useless.  
However, there are more useful extensions.  For example, we saw in an earlier “Once, 
Weakly” that it is possible to dismantle a type generated from a class template into the 
original template and the arguments used in its instantiation. 7 

                                                 
6 To be perfectly precise, the current implementation handles only a bounded number of arguments for 
pointers-to-member-functions and functions, so any function or member function type that has more 
arguments than the implementation can handle will be recorded by the catchall. 
7 “Template Dismantling,” 6 January 2003. 



Once, Weakly:  You Dis’n Me? 

 - 6 - 

template <template <typename> class Templ, typename T> 
struct TemplT { 
 template <typename S> 
 struct Subst 
  { typedef Templ<S> R; }; 
 typedef T Arg; 
 typedef typename Dis<T>::R R; 
}; 
 
template <template <typename> class Templ, typename T> 
struct Dis < Templ<T> > { 
 typedef TList<TemplT<Templ,T>, NullTList> R; 
}; 
 
template <template <typename> class Templ, typename T> 
struct Regen< TList<TemplT<Templ,T>,NullTList> > { 
 typedef Templ<T> R; 
}; 

The above extension to the dismantling framework allows us to examine the fine 
structure of a base type generated from a class template with a single type parameter.  In 
a similar fashion, we can extend the framework to handle types generated from templates 
with other parameter types.8 

Type Manipulation 
What’s the use of all this mechanism, if we’re only going to dismantle a type to put it 
back together again?  As with an engine, once we have a type totally dismantled we have 
the ability to substitute one part for another, remove parts, and modify parts before 
reassembly. 

For example, we can write a simple substitution facility that allows us to replace, within a 
dismantled type, a particular part with some other (perhaps more complex) part: 

template <class T, template <typename> class Pred, class S> 
struct Subst { 
 typedef typename SubstN<1,T,Pred,S>::R R; 
}; 

The Subst template makes use of a compile time predicate function (similar to an STL 
runtime predicate) that is applied to each component of the dismantled representation of 
the type.  If the predicate is true, then the component is replaced by S, where S is a 
dismantled type.  (Subst is actually implemented as a special case of a more general 
facility, SubstN, which performs up to N substitutions on T.  See the implementation for 
details.) 
                                                 
8 Exercise for the reader:  Extend the type-dismantling framework so that it can handle the type-dismantling 
framework.  (Yes, this should cause one to revisit the results of Gödel’s incompleteness theorem.) 
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A slightly more useful substitution operation would involve the component being 
replaced in the construction of what replaces it.  For this, we can employ a compile time 
applicator that can be used to transform a component that satisfies the predicate: 

template <class T, template <typename> class Pred, 
template <typename> class Apply> 

struct SubstA { 
 typedef typename SubstAN<1,T,Pred,Apply>::R R; 
}; 

SubstA is similar to Subst, but components that satisfy the predicate are replaced by 
their transformation by the applicator, rather than by a fixed, dismantled type.  (Like 
Subst, SubstA is a specialization of a more general facility.) 

These substitution mechanisms are fairly flexible.  For instance, it’s easy to write 
predicates and applicators to modify a function type’s arguments to be references to 
const, or to substitute the use of one standard container for another, etc.  However, it 
would be even better to have a more flexible set of facilities that would employ more 
general, regular-expression type matching and replacement, or one that would allow 
specification of a context- free grammar that would control the manipulation of the 
dismantled type.  Stay tuned… 
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