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Template Dismantling 
Dismantling Types 
It’s a fairly common practice in template metaprogramming to dismantle a type into its 
component parts in order to perform some analysis or manipulation on the type.  For 
example, we can ask if a particular type is an array type.  If it is, then we can dismantle it 
into its base type and array bound. 

template <typename T> 

struct IsAry { 

 enum { r = false }; 

}; 

 

template <typename T, int n> 

struct IsAry<T[n]> { 

 enum { 

  r = true, 

  bound = n 

 }; 

 typedef T Base; 

}; 

Once we’ve reduced a type to its piece parts, we can modify or reassemble the pieces to 
suit our needs, in much the same way one might dismantle and rebuild a machine 
composed of many different parts. 

template <typename Cont> 

//… 

// if container is an array, make an array type twice as big 

typedef IsAry<Cont> C; 

typedef typename Select< 

C::r, 

typename C::Base[C::bound*2], 

Cont 

   >::R NewCont; 

 

// if container is an array, make type with same bound and char base 

typedef typename Select< 

    C::r, 

    char[C::bound], 

    Cont 

   >::R NewerCont; 
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Dismantling Templates 
Oddly, I haven’t seen any similar manipulations of types generated from templates (but 
then, I don’t get around much).  However, it’s fairly straightforward (albeit syntactically 
challenging) to do so. 

Suppose we’d like to know whether a particular type was generated from a template.  
We’ll proceed as we did above, using class template partial specialization.  Our primary 
template assumes the negative: 

template <typename T> 

struct IsTemplate { 

 enum { r = false }; 

}; 

Our first partial specialization will catch cases in which a type is generated from a class 
template with a single type argument: 

template <template <typename> class X, typename T> 

struct IsTemplate< X<T> > { 

 enum { r = true }; 

 typedef T Type; 

}; 

Notice our use of a template template parameter.  In this case, we’ve specified a template 
template argument that can be instantiated with a single type argument.  We can now 
distinguish between types that are generated from a class template that accepts a single 
type argument and all other types: 

template <typename T> struct Templ; 

//… 

cout << IsTemplate<char>::r << endl; // false 

cout << IsTemplate< Templ<int> >::r << endl; // true 

cout << IsTemplate< vector<int> >::r << endl; // false! 

Note that this mechanism fails for the std::vector template.  Recall that the standard 
sequence containers are defined with two type parameters, an element type and an 
allocator type.  The second, allocator parameter has a default, but that does not help us 
here.  We can improve this situation by providing partial specializations for templates 
that accept other sets of arguments. 

template <template <typename,typename> class X, 

typename T1, typename T2> 

struct IsTemplate< X<T1,T2> > { 

 enum { r = true }; 

}; 

Now we can handle the standard sequence containers as well as any other templates that 
accept two type parameters. 

cout << IsTemplate< vector<int> >::r << endl; // works… 

We can continue in this fashion until we have a set of partial specializations that can 
handle all cases of interest. 
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template <template <int> class X, int n> 

struct IsTemplate< X<n> > { 

 enum { r = true }; 

}; 

Of course, our goal is not only to identify types that have been generated from templates, 
but also to dismantle them for later manipulation. 

template <template <typename,typename> class X, 

typename T1, typename T2> 

struct IsTemplate< X<T1,T2> > { 

 enum { r = true }; 

 typedef T1 FirstType; 

 typedef T2 SecondType; 

 typedef X Templ; // error! illegal code! 

}; 

It’s easy enough to record the type and non-type parameters as nested values; for 
example, we’ve provided access to the two type parameters of the template above. 

typedef IsTemplate< vector<int> >::SecondType AllocatorType; 

However, it’s less straightforward to provide access to the template template parameter.  
It would be nice if we could provide direct access to the name through a typedef, as we 
do with a type name, but the parameter X is the name of a template, not a type. 

Substitutions 
Even if we can’t provide direct access to the template template parameter, we can still 
provide indirect access to it.  For example, we can allow it to be used to generate new 
types through substitution. 

template <template <typename,typename> class X, 

typename T1, typename T2> 

struct IsTemplate< X<T1,T2> > { 

 enum { r = true }; 

 typedef T1 FirstType; 

 typedef T2 SecondType; 

 template <typename S1, typename S2 = T2> 

 struct SubstType { 

  typedef X<S1,S2> R; 

 }; 

 template <template <typename,typename> class Templ, 

typename S1 = T1, typename S2 = T2> 

 struct SubstTempl { 

  typedef Templ<S1,S2> R; 

 }; 

}; 
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Here we’ve provided a set of nested templates that provide the user of IsTemplate the 
ability to substitute either or both type arguments, or the template argument, to produce a 
new type.  To continue the machine analogy, we can still manipulate the individual parts 
of the machine, but we cannot remove them from the machine’s housing. 

typedef IsTemplate< vector<int> >::SubstType<char>::R MyVec; 

The type MyVec is vector< char, allocator<int> > since only the first type 
parameter to the vector< int, allocator<int> > was substituted. 

typedef IsTemplate< vector<int> >::SubstTempl<list>::R MyList; 

In the case above, we’ve defined the type MyList to be the list analog of the 
vector<int>. 

Applications 
I suspect this technique is going to prove to be fairly useful although, because it is new, 
there are no current uses of it.  However, we can outline an example that demonstrates its 
potential. 

Suppose we have a situation in which we have an STL-compliant container, but we 
require that the container have a random-access iterator.  If it doesn’t, we have to 
construct and populate a container that does have a random access iterator, but still has 
the same element and allocator types as the original container.  (Now, in fact, this is fairly 
easy to do using existing STL facilities, but the point of this exercise is to indicate the 
possibility of doing similar things in a context where we cannot rely on convention.) 

template <class Cont> 

void process( Cont &c ) { 

 typedef typename Select< // #1 

  IsRand<typename Cont::iterator>::r, // #2 

  Cont, // #3 

  typename IsTemplate<Cont>::template SubstTempl<vector>::R // #4 

>::R MyCont; 

 cout << "process: " << typeid(Cont).name() 

<< "\n\tbecame " << typeid(MyCont).name() << endl; 

 //… 

} 

The typedef starting on line #1 defines the type described above; if the type Cont has 
a random access iterator (line #2, see the definition of IsRand below) then the type is 
unchanged from that of the function’s argument (line #3).  Otherwise, the IsTemplate 
facility is used to generate a new container type (line #4).  The type generated will be a 
standard vector with the same element and allocator types as Cont.  (Note the 
required use of the template keyword on line #4 to allow the compiler to parse the 
nested template name SubstTempl correctly.) 

Appendix:  Miscellaneous Utilities 
Here’s the source code for some utilities that appeared above. 
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Select 

Select is basically a compile time if-statement whose result type is either the second or 
third argument, based on the first argument. 

template <bool, typename A, typename> 

struct Select { 

    typedef A R; 

}; 

 

template <typename A, typename B> 

struct Select<false,A,B> { 

    typedef B R; 

}; 

IsRand 

IsRand assumes that its argument is an STL-compliant iterator, and determines whether 
the iterator is random access or not. 

template <typename In> 

struct IsRand { 

    enum { r = 

        IsSame<typename std::iterator_traits<In>::iterator_category, 

                 std::random_access_iterator_tag>::r }; 

    typedef typename Select< r, std::random_access_iterator_tag, 

        std::input_iterator_tag>::R R; 

}; 

IsSame 

IsSame determines whether two types are the same or not.  Of course. 
template <typename T1, typename T2> 

struct IsSame { 

 enum { r = false }; 

}; 

 

template <typename T> 

struct IsSame<T,T> { 

 enum { r = true }; 

}; 
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