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Type Structures 
 

This installment discusses the concept of “type-structures” as a compile-time analog of 
runtime data structures, and demonstrates how to construct and manipulate simple list 
structures at compile time.  Whereas runtime data structures contain and manipulate 
runtime objects, these structures contain compile-time entities such as integer constants, 
types, and templates. 

Data Structures 
Consider a simple, singly-linked list data structure: 

struct List {

int elem_;

List *next_;

};

For clarity of exposition we’re not employing proper data abstraction in the 
implementation of this list-of-integers type.  Ordinarily we would protect the 
representation of the list, and make the list operations members of the list itself.  Here, 
they’re non-members: 
List *insert( List *head, int val ) {

List *newHead = new List;

newHead->elem_ = val;

newHead->next_ = head;

return newHead;

}

int length( List *head ) {

if( head )

return 1 + length( head->next_ );

else

return 0;

}

int index( List *lst, int i ) { // get int at index i

if( i )

return index( lst->next_, i-1 );

else

return lst->elem_;

}
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Note that we’ve employed a recursive approach to the list length and index 
operations, even though an iterative approach would have been more efficient.  However, 
the implementation is effective (that is, it works) even though it leaves a lot to be desired 
in terms of abstraction and efficiency. 

Recursive Type-Structures 
Let’s look at a compile-time analog to the above list data structure: 

template <int n, class N>

struct List_i {

enum { elem = n };

typedef N Next;

};

typedef struct {} NullList_i;

The List_i template is a type-structure analog to the List data structure.  The element 
value is part of the list node’s type (and is recorded as an enumerator).  The analog of the 
data structure’s next_ pointer is a nested type.  The nested type is another instantiation 
of List_i with a different type for Next, and (probably) a different value for elem.  
The unique type NullList_i serves to terminate the list in the same way that a null 
next_ pointer terminates the data structure version of the list.  Therefore, an empty list 
implemented as a data structure is a simple null pointer, whereas an empty list 
implemented as a type-structure is the type NullList_i.  A data structure list 
containing a single integer consists of a single List object with a null next_ pointer.  
A type-structure list containing a single integer consists of an instantiation of List_i 
with NullList_i as the nested Next typename. 

typedef NullList_i L0; // an empty list

typedef List_i<12,L0> L1; // a one-element list

typedef List_i<72,L1> L2; // a two-element list

typedef List_i< 72,List_i<12,NullList_i> > L2; // the same list

We can also implement compile-time analogs of the three list operations above.  Inserting 
(prepending) an integer to an existing list is straightforward: 

template <int val, class L>

struct Insert_i {

typedef List_i<val,L> R;

};

This “insert” template simply prepends its integer argument onto an existing list. 
typedef Insert_i<144,L2>::R L3; // a three-element list

Calculating the length of a list requires recursion: 
template <typename L> struct Length_i;

template <int n, class L>

struct Length_i< List_i<n,L> > {
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enum { r = 1 + Length_i<L>::r }; // recurse for length of tail

};

template <>

struct Length_i<NullList_i> {

enum { r = 0 };

};

As with the analogous runtime recursion employed in the length function, the 
Length_i template recursively calculates the length of the tail of the list, and adds one 
to the result.  The recursion terminates with the complete specialization for a null list, just 
as the runtime recursion terminates when it encounters a null pointer.  Note that the result 
of the calculation is an integer constant-expression. 

double someArray[ Length_i<L3>::r ]; // array of 3 doubles

Extracting the integer value of a node at a given index within the list is only slightly more 
involved. 

template <class List, int index>

struct Index_i;

template <int elem, class T, int i>

struct Index_i< List_i<elem,T>,i > {

enum { r = Index_i<T,i-1>::r };

};

template <int elem, class T>

struct Index_i< List_i<elem,T>,0 > {

enum { r = elem };

};

As with the runtime-recursive version, as shown in the index function, the compile-
time-recursive version implemented in Index_i does a “countdown” of the requested 
index as it traverses the list.  When the index has been counted down to zero, the integer 
at head of the list is the required element. 

switch( anInt ) {

case Index_i<L3,0>::r:

stmt1; break;

case Index_i<L3,1>::r:

stmt2; break;

case Index_i<L3,2>::r:

stmt3; break;

}

Note that, again, the result of the Index_i operation is an integer constant-expression, 
and (in this case) the code above results in a switch over the integer values 144, 72, and 
12. 
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Type Lists 
In point of fact, it’s relatively rare to manipulate compile-time data structures of integers 
or other basic types (although this is occasionally useful).  Templates are limited in what 
kings of arguments may be used for their instantiation:  integers (as we’ve seen for 
List_i, above), the addresses of objects and functions with external linkage, and 
pointers to class members. 

template <void (*f)(), class U>

struct FList { // list of pointers to external functions

static void exec() { f(); }

typedef U Tail;

};

typedef struct {} NullFList;

template <typename> struct FLength;

template <void(*f)(), class U>

struct FLength< FList<f,U> > {

enum { value = 1 + FLength<U>::value };

};

template <>

struct FLength<NullFList> {

enum { value = 0 };

};

// etc…

However, it is fairly common to manipulate collections of types at compile time.1  A few 
minor changes to our implementation of List_i produce an equivalent type-structure 
whose elements are types, rather than integers.2 

template <typename T, class U>

struct TList {

typedef T Head;

typedef U Tail;

};

typedef struct {} NullTList;

                                                 
1 The original and best treatment of this subject may be found in Andrei Alexandrescu’s Modern C++ 
Design, Addison-Wesley, 2001.  The discussion here owes a lot to his presentation there. 
2 See the addendum for an example of a type-structure whose elements are templates, rather than types. 
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template <typename> struct TLength;

template <typename T, class U>

struct TLength< TList<T,U> > {

enum { value = 1 + TLength<U>::value };

};

template <>

struct TLength<NullTList> {

enum { value = 0 };

};

template <class,int> struct TIndex;

template <class H, class T, int i>

struct TIndex< TList<H,T>,i > {

typedef typename TIndex<T,i-1>::R R;

};

A few preprocessor macros can be used to ease the creation of type lists: 
#define TList1(T1) TList<T1,NullTList>

#define TList2(T1,T2) TList<T1,TList1(T2) >

#define TList3(T1,T2,T3) TList<T1,TList2(T2,T3) >

Now we can use our type-structures for compile-time manipulation of collections of 
types:3 

typedef TList3(char,int,double) X;

cout << TLength<X>::value << endl;

TIndex<X,2>::R anObject; // an object of type double

Template Lists 
It’s instructive (and fun) to extend our notion of a type list to that of a template list.  Here 
we have a list of class templates that (like the standard sequence containers) must be 
instantiated with two type arguments:4 

template <template <typename,typename> class T, class U>

struct MList {

template<typename E, typename A>

struct Template {

typedef T<E,A> C;

};

                                                 
3 See Chapter 3 of Modern C++ Design to see why these typelists are so useful. 
4 These standard containers have a first parameter of the element type, and a second parameter of the 
allocator type, which has a default. 
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typedef U Tail;

};

typedef struct {} NullMList;

(Note the need to wrap a template around the template template parameter in order to get 
access to it.) 

We can manipulate these type-structures of templates just as we manipulate type 
structures of integers and types. 

template <typename> struct MLength;

template <template <typename,typename> class T, class U>

struct MLength< MList<T,U> > {

enum { value = 1 + MLength<U>::value };

};

template <>

struct MLength<NullMList> {

enum { value = 0 };

};

template <class,int> struct MIndex;

template <template <typename,typename> class H, class T, int i>

struct MIndex< MList<H,T>,i > {

typedef typename MIndex<T,i-1>::R R;

};

template <template <typename,typename> class H, class T>

struct MIndex< MList<H,T>,0 > {

typedef MList<H,T> R;

};

Use of template lists can parallel that of type lists: 
typedef MList3(list,vector,deque) A;

cout << MLength<A>::value << endl;

MIndex<A,1>::R::Template<char *,std::allocator<char *> >::C

aContainer; // a vector of char *

We noted above the need to wrap a template around the template template parameter in 
order to access it as a nested type name of the list element.  It would be preferable to 
access the name as an uninstantiated template name rather than a type name.  For 
example, it would be convenient if we could simply use a nested “templatedef” similar to 
a typedef, or if the meaning of typedef could be extended to include templates.  But we 
can’t… 

template <template <typename,typename> class T, class U>
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struct MList {

templatedef T Template; // illegal, templatedef doesn’t exist

typedef T Template; // illegal, T isn’t a type

};

The Future 
In future “Once, Weakly” installments, we’ll look more deeply into the uses of type lists 
and template lists, and examine the possibilities of type-structures more complex than 
simple linear lists. 
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