Once, Weakly: SFINAE Sono Buoni

SFINAE Sono Buoni

SFINAE
In attempting to use function template argument deduction to select among a number of
candidate function templates, a C++ compiler may attempt an instantiation that fails on
one or more of them.

tenplate <typenanme T> void f(T);

tenpl ate <typenane T> void f(T *);

...

f(1024); // instantiates first f

Even though substitution of the integer for T * in the second f function template would
have been incorrect, the attempted substitution does not give rise to an error provided that
a correct substitution is found. In this case, the first f is instantiated, and there is no
error. Thus, we have the “substitution failure is not an error” concept, dubbed SFINAE
by Vandevoorde and Josuttis.

SFINAE is an important property in that, without it, it would be difficult to overload
function templates; the combination of argument deduction and overloading would render
many uses of a set of overloaded function templates illegal. But SFINAE is also valuable
as a metaprogramming technique.

SFINAE vs. Partial Specialization
Consider a simple utility that can be used to determine whether a type is a pointer type:
tenplate <typenane T> // T is not a pointer...
struct IsPtr
{ enum{ r = false }; };

tenpl ate <typenane T> // .unless it’'s an unqualified pointer
struct IsPtr<T *>
{ enum{ r = true }; };

tenpl ate <typenane T> // ..or a const pointer
struct IsPtr<T * const>
{ enum{ r = true }; };

tenpl ate <typenane T> // ..or a volatile pointer
struct IsPtr<T * volatile>

{ enum{ r =true }; };

tenpl ate <typenane T> // ..or a const volatile pointer

! Vandevoorde and Josuttis, C++ Templates, Addison-Wesley 2003.

-1-

Once, Weakly: SFINAE Sono Buoni

struct IsPtr<T * const volatil e>
{ enum{ r = true }; };
This can be used to make a compile time, metaprogrammed decision. For example, we
can choose alternate container implementations based on whether the container’s element
type is a pointer or not.
tenpl ate <typenane T>
class SList {
/...
typedef typenane
Select< IsPtr<T>::r, Cptr< DePtr<T> >, T >::R HEl enflype;
private:
struct Node {
Node *next _;
El enType el _;
} *head_;
/...
1
We can use SFINAE to achieve a similar result.
typedef True char; // sizeof(True) ==
typedef struct { char a[2]; } False; // sizeof(False) > 1
/...
tenpl ate <typenane T> True isPtr(T *);
Fal se isPtr(...);

#define is_ptr(e) (sizeof (isPtr(e))==sizeof (True))

Here, we can determine whether the type of an expression is a pointer through a
combination of function template argument deduction and SFINAE. If the expression e
has pointer type, the compiler will match the template function i sPt r, otherwise it will
match the non-template i sPt r function with the ellipsis formal argument. SFINAE
assures us that the attempt to match the template i sPt r with a non-pointer will not
result in a compile time error.

The second bit of magic is the use of si zeof inthei s_ptr macro. Notice that neither
i sPt r function is defined. This is correct, because they are never actually called. The
appearance of the function call in a si zeof expression causes the compiler to perform
argument deduction and function matching, but does not cause a function call to be
generated. si zeof is interested only in the size of the return type of the function that
would have been called. We can then check the size of the function’s return type to
determine which function was matched. If the compiler selected the function template,
then the expression e had pointer type.

Note that we did not have to special case for const pointers, volatile pointers, and const
volatile pointers as we did for the analogous | sPt r facility above that we implemented
with class template partial specialization. As part of function template argument

-2-

Once, Weakly: SFINAE Sono Buoni

deduction, the compiler will ignore “first level” cv-qualifiers (const and volatile) as well
as reference modifiers. (If we’d wanted to distinguish differently qualified pointer types,
then we’d have declared four different template i sPt r functions to take formal
argument types of reference to pointer.) Note also that we do not have to be concerned
about incorrectly identifying as a pointer type a user-defined type that has a conversion
operator. The compiler employs a very restricted list of conversions on the actual
arguments during function template argument deduction, and user-defined conversions
are not on the list.
tenpl ate <typenane T>
class Not APtr {
...
operator T *() const; // conversion operator
1
/...
Not APt r <i nt > nap;
Select< is _ptr(nap), X, Y>:Rtenmp; //temp is of type Y

SFINAE Examples
Is this type a class type?
tenpl ate <typenane T>
struct |sC ass {
tenplate <class C static True isCass(int C:*);
tenpl ate <typenanme C static False isCass(...);
enum { r = sizeof (I1sC ass<T>::isC ass<T>(0)) == sizeof (True) };

I
Is This Type a Pointer to a Class Type?
tenpl ate <typenane T>
struct IsPtrTod ass {
enum{ r = IsPtr<T>::r && |sC ass<typenanme DePtr<T>:R>::r };

b
Does This Class Contain The Typenamei t er at or ?

This is abstracted from Vandevoorde and Josuttis. Of course, this can be implemented to
ask the question of any nested typename, not justi t er at or .

tenpl ate <class C

True haslterator(typenane C.:iterator const *);

tenpl ate <typenane T>

Fal se haslterator(...);

#define has_iterator(C) (sizeof(haslterator<C>(0))==sizeof(True))

Is This a Non-Static Member Function?

This is implemented to answer the question for member functions of 0, 1, or two
arguments, but can easily be extended to any fixed number.

tenpl ate <typenane R, class C

Once, Weakly: SFINAE Sono Buoni

True isMenf(R(C:*)());

tenpl ate <typenane R typenanme A class C
True isMenf(R (C:*)(A);

tenpl ate <typenane R, typenane Al, typenanme A2, class C
True isMenf(R (C :*) (A1, A2));

Fal se ishMenf(...);

#define is_nmenber _func(f) (sizeof (isMenf(f)) == sizeof (True))
CanlConvertaTltoaT2?

This is from Andrei Alexandrescu. Note that this mechanism will detect both predefined
and user-defined conversions.
tenpl ate <typenane T1l, typename T2>
struct CanConvert ({
static True canConvert(T2);
static Fal se canConvert(...);
static T1 makeT1l();
enum { r = sizeof (canConvert(nakeTl())) == sizeof (True) };

b

Appendix: Miscellaneous Utilities
Here’s the source code for some utilities that appeared above.

Select

This implementation of Sel ect is a modified form of the Sel ect that appears in
Andrei Alexandrescu’s Loki Library. It is basically a compile time if-statement whose
result type is either the second or third argument, based on the first argument.
tenpl ate <bool, typenane A, typenane B>
struct Sel ect {
typedef A R

s

tenpl ate <typenane A, typenane B>
struct Sel ect<fal se, A B> {
typedef B R;
1
Cptr

Cpt r is a modified form of Nicolai Josuttis’s Count edPoi nt er that appeared in his
The C++ Standard Library. Cpt r is a “smart pointer” that reference counts and garbage
collects the object to which it refers.

Once, Weakly: SFINAE Sono Buoni

tenpl ate <class T>
class Cptr {
publi c:
Ootr(T*p) : p_(p), c(newlong(1)) {}
~Cptr() { if(!--*c_) { delete c_; delete p_; } }
Cptr(const Cptr & nit)
p(init.p_), c (init.c_) { ++*c_; }
Cptr &operator =(const Cptr & hs) {
if(this !'= &hs) {
if(!'--*c_) { delete c_; delete p_; }
p_ =rhs.p_;
++*(c_ =rhs.c_); // macho!

}

return *this;

}

T &operator *() const { return *p_; }
T *operator ->() const { return p_; }

private:
T *p_;
long *c_;
1
DePtr

DePt r strips away a single pointer modifier from the type used to instantiate it, if
possible.
tenpl ate <typenane T>
struct DePtr ({
typedef TR // T is not a ptr; result is sane
1
tenpl ate <typenane T>
struct DePtr<T *> {
typedef TR, // pointed-to type
1
tenpl ate <typenane T>
struct DePtr<T * const> {
typedef TR, // pointed-to type
1
tenpl ate <typenane T>
struct DePtr<T * volatile> {
typedef TR // pointed-to type
H
tenpl ate <typenane T>
struct DePtr<T * const volatile> {

-5-

Once, Weakly: SFINAE Sono Buoni

typedef TR // pointed-to type

Copyright © 2002 by Stephen C. Dewhurst

