
Once, Weakly: Expanding Monostate

 - 1 -

Expanding Monostate Protopattern

Monostate
This is a technique in search of an application. Let’s consider the Monostate pattern. A
Monostate is a viable alternative to Singleton in many cases when trying to avoid the
embarrassment of global variables.

class Monostate {
 public:
 int getNum() const { return num_; }
 void setNum(int num) { num_ = num; }
 const std::string &getName() const { return name_; }
 private:
 static int num_;
 static std::string name_;
};

Like Singleton, a Monostate provides access to a single, shared copy of an object. Unlike
a typical Singleton, the sharing is accomplished not by lazy construction of the object, but
by access to static member data. Note that a Monostate differs from a traditional (and
now outmoded and denigrated) use of a collection of static member data accessed
through static member functions. A Monostate provides non-static member functions to
access its static data.

Monostate m1;
Monostate m2;
//…
m1.setNum(12);
cout << m2.getNum() << endl; // shift 12

Every object of a particular Monostate type shares the same state. However, users of the
Monostate do not have to employ any special syntax to get this result, unlike the
corresponding use of a Singleton.

Singleton::instance().setNum(12);
cout << Singleton::instance().getNum() << endl;

Expanding Monostate
What if we’d like to be able to augment the members of a Monostate? Ideally this
augmentation should take place without source code change, and if possible without
recompilation of existing code that is not directly concerned with the augmentation.
Let’s look at a simple use of a template member function to accomplish this.

class Monostate {
 public:
 template <typename T>
 T &get() {

Once, Weakly: Expanding Monostate

 - 2 -

 static T member;
 return member;
 }
};

Note that a template member function will be instantiated as needed during compilation,
and that it cannot be virtual. Fortunately, we do not require that our Monostate accessor
functions be virtual. This version of Monostate implements a “lazy creation” strategy for
its shared static members.

Monostate m;
m.get<int>() = 12; // create an int member
Monostate m2;
cout << m2.get<int>(); // access previously-created member
m2.get<std::string>() = “Hej!” // create a string member

Note that, unlike the lazy creation of a traditional Singleton, this lazy creation takes place
at compile time instead of runtime.

Indexed Expanding Monostate
This approach is clearly far from ideal, at least if one wants to have more than one shared
member of a particular type. One way to ameliorate the situation would be to add a
second, “index,” parameter to the template member function.

class IndexedMonostate {
 public:
 template <typename T, int i>
 T &get();
};

template <typename T, int i>
T &IndexedMonostate::get() {
 static T member;
 return member;
}

Now we have the ability to have more than one member of a particular type, but the ease
of use of the technique clearly leaves something to be desired.

IndexedMonostate im1, im2;
im2.get<int,1066>() = 12;
im2.get<double,42>() = im2.get<int,1066>()+1;

Named Expanding Monostate
What we really need is a way to generate a mnemonic name for the user of a Monostate
member that also encapsulates both a unique instantiation type for the template member
function, and the actual type of the static member.

template <typename T, int n>
struct Name {

Once, Weakly: Expanding Monostate

 - 3 -

 typedef T Type;
};

The Name template doesn’t look like much, and it isn’t. But it’s just enough.
typedef Name<int,86> grossAmount;
typedef Name<double,007> percentage;

Now we can generate readable (type) names that bind together an index and a member
type. Note that the actual values of the indexes are immaterial, as long as the
[index,type] pair is unique. A Named Monostate makes the assumption that the type of
the member can be extracted from its instantiation type.

class NamedMonostate {
 public:
 template <class N>
 typename N::Type &get() {
 static typename N::Type member;
 return member;
 }
};

This results in an improved user interface, without sacrificing any of the simplicity or
flexibility of the original technique.

NamedMonostate nm1, nm2;
nm1.get<grossAmount>() = 12;
nm2.get<percentage>() = nm1.get<grossAmount>() + 12.2;
cout << nm1.get<grossAmount>() * nm2.get<percentage>() << endl;

Protopattern? What’s That?
As we mentioned earlier, this is a technique looking for an application. As such, we
really don’t have the right to call it a pattern. A design pattern is an encapsulation of
existing successful practice. The term “protopattern” is usually applied to a technique
that has been observed in one or two contexts, but has not (yet) been shown to be widely
enough employed to deserve the “pattern” appellation. I’m stretching things a bit here by
calling an Expanding Monostate a protopattern, since I can’t point to even a single
successful application of it!

