29 February 2016: Talking to Typelists | Steve Dewhurst

Talking to Typelists

Type sequences implemented with variadic templates have largely supplanted the
traditional use of typelists in new C++ code. However, we have nearly two decade’s worth
of complex, debugged, and useful legacy typelist code that we’d like to leverage for use with
type sequences without having to rewrite them.

Additionally, modern C++ metaprogramming makes extensive use of index sequences as
well as type sequences. Many index sequence meta-algorithms are logically similar to
corresponding meta-algorithms on typelists (and type sequences). Wouldn't it be
convenient to simply and automatically convert a typelist meta-algorithm into a
functionally-similar index sequence meta-algorithm?

To be concrete, if we have Sort meta-algorithm that sorts a typelist with a compile-time
comparator that compares types, wouldn’t it be nice to generate automatically a sort_is
meta-algorithm that sorts an index sequence with a compile-time comparator that
compares indexes? You bet it would!

template <typename IntegerSequence,
template <size_t, size_t> class Comparator>
using sort_is = convert<IntegerSequence, Comparator, Sort>;

That’s what we’re going to do in this installment of Once, Weakly.

First, we’ll show how to translate among typelists, type sequences, and index sequences so
that each of these sequence categories can be manipulated with meta-algorithms written
for other sequence categories.

Then, we’ll show how to adapt predicates and comparators for indexes to be converted to
similar predicates and comparators on types.

Finally, we’ll show how to automate the adaptation of a typelist meta-algorithm to an index
sequence meta-algorithm while simultaneously adapting predicates and comparators.

Typelists

A traditional typelist is a nested type structure that represents an ordered sequence of zero
or more types. They look like this:

template <class H, class T> // a type followed by a type list, or...
struct typelist {
typedef H head;
typedef T tail;
}s
class null typelist {}; // ...an empty type list

Page 1 of 12



29 February 2016: Talking to Typelists | Steve Dewhurst

A typelist meta-algorithm performs some useful compile-time calculation on a typelist.
Here’s an STL-like partition algorithm for a typelist.1

template <class TList, template <class> class Pred>
struct Partition;

The Pred parameter is a predicate over a type. For instance:

template <class T> struct IsSmall
{ enum { value = sizeof(T) < 8 }; };

Assuming we have available an initial typelist, we can partition it according to whether its
members are “small”:2

typedef typename Partition<initial, IsSmall>::type partitioned;

The implementation of Partition is relegated to two partial specializations of the primary
template. The first handles the degenerate case of a null typelist:3

template <template <class> class Pred>
struct Partition<null typelist, Pred> {
typedef null typelist type;
enum { value = 0 };

}s

The second performs recursive specialization to reorder the typelist according to the
predicate:

template <class Head, class Tail, template <class> class Pred>
struct Partition<typelist<Head, Tail>, Pred> {
typedef typename Select<
Pred<Head>: :value,
typelist<Head, typename Partition<Tail, Pred>::type>,
typename Append<typename Partition<Tail, Pred>::type,
Head>: :type
>::type type;
enum { value
= Partition<Tail, Pred>::value + Pred<Head>::value };

}s

1 For more about typelists, see Andrei Alexandrescu’s Modern C++ Design, Addison-Wesley 2001. For examples of
C++03 typelist meta-algorithms and meta-algorithm implementations, see Once, Weakly for 9 September 2003 and
21 February 2004.

2 https://en.wikipedia.org/wiki/Let%27s_Get_Small.

3 Here, we use the modern convention of giving a type result the name “type” and a value result the name “value.”
The code accompanying the Once, Weakly installments mentioned above use an older, idiosyncratic convention of
“R” for a type result and “r” for a value result. The code for the typelist meta-algorithms that accompany this
installment of Once, Weakly uses the modern convention.

Page 2 of 12



29 February 2016: Talking to Typelists | Steve Dewhurst

Type Sequences

In modern C++ we prefer to use type sequences defined by a variadic template with a
typename parameter pack:

template <typename... Ts>
struct type_sequence {};

As with typelists, we have frequent recourse to meta-algorithms on type sequences. For
example, we may also want to partition a type sequence:*

using initial = type_sequence<~~~>;
using partitioned = partition_t<initial, IsSmall>;

partition_t is a convenience using-declaration:

template <typename TypeSequence, template <typename> class Pred>
struct partition;

template <typename TypeSequence, template <typename> class Pred>
using partition_t = typename partition<TypeSequence, Pred>::type;

The implementation of partition for type sequences is a simple upgrade of the typelist
version. An empty type sequence is easy to partition:

template <template <typename> class Pred>
struct partition<type sequence<>, Pred> {
using type = type_sequence<>;
enum : size t { value = 0 };
}s

The main body of the implementation uses the omnipresent First/Rest idiom:

template <typename H, typename... T, template <typename> class Pred>
struct partition<type sequence<H, T...>, Pred> {

using Ptail = partition<type_sequence<T...>, Pred>;

using tail t = typename Ptail::type;

using type = std::conditional_t«
Pred<H>: :value,
pushfront_t<H, tail t>,
pushback t<H, tail t>
>5
enum : size_ t { value = Ptail::value + Pred<H>::value };

}s

4 Note the convention in the code examples of using three consecutive tildes to indicate that details have been
elided. The more conventional use of an ellipsis is confusing in modern C++, where we have ellipses coming out of
our ears, and the character sequence ~~~ is not (yet!) syntactically-correct C++.

Page 3 of 12



29 February 2016: Talking to Typelists | Steve Dewhurst

So, it was straightforward but non-trivial to re-implement the typelist partition meta-
algorithm as a type sequence meta-algorithm. However, other meta-algorithms are not so
trivial, and (of course) it’s always inadvisable to repeat oneself by establishing parallel
bodies of code which must be maintained in sync.

It would be preferable to leverage our existing typelist meta-algorithms directly. All we
need is a way to translate between typelists and type sequences.

Converting Between Typelists and Type Sequences
Making typelists in modern C++ is trivial...

template <typename... Ts>
struct MakeTypelist;

template <typename... Ts>
using make_typelist = typename MakeTypelist<Ts...>::type;

template <typename Head, typename... Tail>
struct MakeTypelist<Head, Tail...> {
using type = typelist<Head, make_typelist<Tail...>>;

}s

template <>
struct MakeTypelist<> {

using type = null_typelist;
}s

...and thanks to parameter pack expansion, converting a type sequence to a typelist is even
easier.

template <typename TypeSequence>
struct TS _2 TL;

template <typename TypeSequence>
using type_sequence_2_ typelist
= typename TS_2_ TL<TypeSequence>::type;

template <typename... Ts>

struct TS 2 TL<type sequence<Ts...>> {
using type = make_typelist<Ts...>;

}s

Of course, we'll want to be able to convert a typelist back to a type sequence:>

template <typename Typelist>
struct TL_2_TS;

5 The implementation is unsurprising but lengthy and may be found in the accompanying code.

Page 4 of 12



29 February 2016: Talking to Typelists | Steve Dewhurst

template <typename Typelist>
using typelist_2 type sequence = typename TL_2 TS<Typelist>::type;
Leveraging Legacy Type List Meta-Algorithms

As an example of a legacy typelist meta-algorithm we’d like to leverage for type sequences,
consider a set intersection that finds the intersection of two unordered typelists:

template <class TListl, class TList2>
struct SetIntersection;

In order to find the set intersection of two type sequences, all we have to do is convert the
type sequences to typelists, intersect the typelists, and convert the resulting typelist to a
type sequence.

First, get/make/find/steal some type sequences:

using sl = ~~n~;
using s2 = ~~nj

Convert them to typelists:

using ti
using t2

type_sequence 2 typelist<sl>;
type_sequence_2_ typelist<s2>;

Get their intersection as a typelist:

using inter = typename SetIntersection<tl, t2>::type;
Convert back to a type sequence:

using intersection = typelist 2 type sequence<inter>;
That’s quite a mouthful! A using-declaration can improve readability.

template <typename TSeql, typename TSeq2>
using set_tintersection_ts =
typelist 2 type sequence<
typename SetlIntersection«
type_sequence_ 2 typelist<TSeql>,
type_sequence_2 typelist<TSeq2>
>::type
>3

That's quite a mouthful too but—as usual—it will benefit the users of our code.
using intersection = set_intersection_ts<sl, s2>;

So, we have the useful but rather unsurprising result that we can leverage meta-algorithms
written for lists of types to work with sequences of types. Let’s turn now to the possibility
of manipulating other kinds of sequences with typelist meta-algorithms.

Page 5 of 12



29 February 2016: Talking to Typelists | Steve Dewhurst

Index Sequences

C++14 has a standard index sequence template and a means to generate index sequences.
It looks something like this:

template <size_t... indexes> // it's not exactly this,
struct index_sequence { ~~~ }; // but close enough

using seq = make_index_sequence<N>; // [0, N)

We'll discuss in more detail why index sequences are so useful in combination with pack
expansion in a future Once, Weakly. For now, let’s just note that it’s useful to be able to
generate a variety of different index sequences through the application of index sequence
meta-algorithms.

But do we really have to write index sequence meta-algorithms? After all, nearly anything
we might want to do with a sequence of indexes has probably already been implemented as
a meta-algorithm that works with a type sequence or, more probably, a typelist. All we
need to provide is a means to translate between index sequences and type sequences.

Translating Between Index Sequences and Type Sequences

First, let’s find a way to (take your pick) wrap a type around an index, or convert an index
into a type. This is a long-solved problem:®

template <size_t i>
struct Index2Type {
enum : size t { value = i };

}s
The interface is similar to what we’ve already seen.

template <typename IndexSequence>
struct IS_2 TS;

template <typename IndexSequence>
using 1index_sequence_2_type_ sequence
= typename IS_2 TS<IndexSequence>::type;

Pack expansion renders the implementation trivial:

template <size_t... iseq>
struct IS _2 TS<index_sequence<iseq...>> {
using type = type_sequence<Index2Type<iseq>...>;

}s

The implementation of a capability to revert such a type sequence to an index sequence is
equally straightforward.

6 Andrei again. | mean, op cit. There, it’s called Int2Type.

Page 6 of 12



29 February 2016: Talking to Typelists | Steve Dewhurst

It's probably clear at this point that we can combine these conversion operations to allow
most conversions among these three sequence types:

index_sequence_2_type_sequence
type_sequence 2 typelist
typelist 2 type_sequence

revert_type sequence_2 index_sequence
index_sequence_2_ typelist
typelist 2 index_sequence

This in turn means that we can now find the set intersection of two index sequences, using
a meta-algorithm written for typelists (or type sequences, for that matter).

Get/make/find/steal some index sequences:

using sl = make_index_sequence<N>;
using s2 = make_index_interval<5, N+5>;

Convert them to typelists:

using tl = index_sequence_ 2 typelist<sl>;
using t2 = index_sequence_2_ typelist<s2>;
Intersect the typelists:

using inter = typename SetIntersection<tl, t2>::type;
And convert the resulting typelist to an index sequence:

using inter_indexes = typelist 2 index_sequence<inter>;

Sequence Predicates and Comparators

The typelist set intersection meta-algorithm works for converted index sequences because
there is a 1-1 mapping between each index and the type generated by Index2Type.
Because this set intersection algorithm compares elements for equality (rather than
equivalence) the 1-1 mapping ensures that if two generated types compare equal, the
underlying indexes must as well.

Not all typelist meta-algorithms have this property, and are instead parameterized with
type predicates. However, if we're actually processing an index sequence, the predicate or
question we want to ask will be about indexes, not types.

We can address this issue by making an index predicate look like a type predicate.

template <template <size_t> class IndexPred>
struct IndexPred2TypePred {
template <typename T>
struct TypePred {
enum : bool { value = IndexPred<T::value>::value };
}s
}s

Page 7 of 12



29 February 2016: Talking to Typelists | Steve Dewhurst

The index predicate is disguised as a type predicate, but reverts to an index predicate when
invoked with a type generated from an index with Index2Type.

As an example, consider a simple find-if meta-algorithm on typelists:

template <class TL, template <class> class Pred>
struct FindIf;

The meta-algorithm expects to be invoked with a typelist and a type predicate. We have to
convert the index sequence to a typelist, and an index predicate to a type predicate. For
example...

template <size_t i>
struct IsOdd : truthiness<i&1l> {};

...is an index predicate that tells us whether an index is odd or not. The base class
truthiness? could be defined as

template <bool c¢>
using truthiness
= std::conditional t<c, std::true_type, std::false type>;

Now we can look for odd indexes. First, find or steal an index sequence:
using iseq = index_sequence<9,2,6,2,4,9,6,7>;

Convert it to a typelist:
using tl = index_sequence_2 typelist<iseq>;

Convert index predicate to type predicate:

template <typename T>
using IsOdd_t = IndexPred2TypePred<IsOdd>::TypePred<T>;

Invoke the typelist meta-algorithm:
constexpr size_ t index = FindIf<tl, IsOdd t>::value; // == 5
Similarly, we may want to sort an index sequence using a typelist sort meta-algorithm.

template <class TL, template <class, class> class Comp>
class Sort;

As with our index predicate, we have to be able to disguise an index comparator as a type
comparator:

template <template <size_t, size_t> class IndexComp>
struct IndexComp2TypeComp {

template <typename T1l, typename T2>

struct TypeComp A

7 http://cs.union.edu/seminar/archive/2008-9/saks.html.

Page 8 of 12



29 February 2016: Talking to Typelists | Steve Dewhurst

enum : bool
{ value = IndexComp<T1l::value, T2::value>::value };
}s
}s

Similarly,

template <typename T1, typename T2>

using IsGreater_t = IndexComp2TypeComp<IsGreater>::TypeComp<Tl, T2>;
using 1is index_sequence<3, 2, 1, 8, 4, 7, 5, 6, 9>;

using tl index_sequence_2_ typelist<is>;

using result_tl = typename Sort<tl, IsGreater_t>::type;

using result = typelist 2 index_sequence<result tl>;

// == index_sequence<9, 8, 7, 6, 5, 4, 3, 2, 1>;

Useful Use of Using

That’s yet another mouthful. As usual, we can call on one or more using-declarations to
simplify the syntax:

template <typename Typelist, // sort a typlist
template <typename, typename> class Pred>
using sort_tl = ~~~;

template <typename TypeSequence, // sort a type sequence
template <typename, typename> class Pred>
using sort_ts = ~~~;

template <typename IndexSequence, // sort an index sequence
template <size_t, size_t> class Pred>
using sort_is = ~~~;

Now it's easy to sort typelists, type sequences, and index sequences with the same legacy
typelist meta-algorithm:

using result_tl
using result_ts
using result_is

sort_tl<tl, IsGreater_t>; // sort typelist
sort_ts<ts, IsGreater_t>; // sort type sequence
sort_is<is, IsGreater>; // sort index sequence

Unfortunately, the implementation of (for example) sort_is is not the kind of code we’d
like to have to repeat each time we convert a typelist meta-algorithm:

template <
typename IndexSequence,
template <size_t, size_t> class Comp>
using sort_1is =
typelist 2 index_sequence<
typename Sort<

Page 9 of 12



29 February 2016: Talking to Typelists | Steve Dewhurst

index_sequence_2 typelist<IndexSequence>,
IndexComp2TypeComp<Comp>: :template TypeComp
>::type
>3

Fortunately, we can promote the hard-coded typelist meta-algorithm (Sort, in this case) to
a parameter of the using-declaration:

template <
typename IndexSequence,
template <size_t, size t> class Comp,
template <typename,
template <typename, typename> class> class Algorithm>
using convert_algorithm_1_comp =
typelist 2 index_sequence<
typename Algorithm<
index_sequence_2 typelist<IndexSequence>,
IndexComp2TypeComp<Comp>: :template TypeComp
>::type
>3

We can produce a more-or-less complete set of these Adapter® pattern-inspired usings to
automate conversion of meta-algorithms/predicates/comparators for one sequence type to
work with another sequence type. For example, to convert typelist meta-algorithms for use
with index sequences, we might have:

template < // typelist meta-algorithm takes a single typelist.
typename IndexSequence,
template <typename> class Algorithm>

using convert_algorithm_1 = ~~~;

template < // here it takes two typelists.
typename IndexSequencel,
typename IndexSequence2,
template <typename, typename> class Algorithm>
using convert_algorithm_2 = ~~~;

template < // here it takes a single typelist and a predicate.
typename IndexSequence,
template <size_t> class Pred,
template <typename, template <typename> class> class Algorithm>
using convert_algorithm_1_pred = ~~~;

template < // here it takes a single typelist and a comparator.
typename IndexSequence,

8 http://c2.com/cgi/wiki?AdapterPattern.

Page 10 of 12



29 February 2016: Talking to Typelists | Steve Dewhurst

template <size_t, size t> class Comp,
template <typename,
template <typename, typename> class> class Algorithm>
using convert_algorithm_1_comp = ~~~;

template < // here it takes two typelists and a predicate.
typename IndexSequencel,
typename IndexSequence2,
template <size_t> class Pred,
template <typename, typename,
template <typename> class> class Algorithm>
using convert_algorithm_2 _pred = ~~~;

template < // here it takes two typelists and a comparator.
typename IndexSequencel,
typename IndexSequence2,
template <size_t, size t> class Comp,
template <typename, typename,
template<typename, typename> class> class Algorithm>
using convert_algorithm_2_comp = ~~~;

With these adapters in place it's easy to leverage our existing set of typelist meta-
algorithms for manipulating index sequences:

template <typename ISeq,
template <size_t, size_t> class Comp>
using sort_is =
convert_algorithm_1 comp<ISeq, Comp, Sort>;

template <typename ISeq,
template <size_t> class Pred>
using partition_is =
convert_algorithm_1 pred<ISeq, Pred, Partition>;

template <typename ISeql, typename ISeq2>
using set_tintersection_is =
convert_algorithm_2<ISeql, ISeq2, SetIntersection>;

Going the Other Way

It's easy to leverage meta-algorithms on typelists or type sequences to work with index
sequences because, with a facility like Index2Type, it's straightforward to construct a
mapping from indexes to types and back again.

What about going the other way? That is, can we use index sequence meta-algorithms on
typelists or type sequences? It’s possible, but the implementation of the mapping from

Page 11 of 12



29 February 2016: Talking to Typelists | Steve Dewhurst

type to integral is much more complex, and typically imperfect (at least without assistance
from the compiler, which is unlikely to be forthcoming).

For an example of an approach to such a mapping, see a Godel mapping of the C++ type
system in CUJ.?
Next Time...

In addition to sequences of types and sequences of indexes, it's profitable to manipulate
sequences of other kinds of entities. In the next installment of Once, Weakly we'll look at
template sequences and show how we can leverage meta-algorithms on typelists and type
sequences to manipulate them as well.

© 2016 by Stephen C. Dewhurst

stevedewhurst.com

9 Stephen C. Dewhurst, A Bit-Wise Typeof Operator, Part 1. C/C++ Users Journal 20, 8 (August 2002), A Bit-Wise
Typeof Operator, Part 2. C/C++ Users Journal 20, 10 (October 2002), and A Bit-Wise Typeof Operator, Part 3. C/C++
Users Journal 20, 12 (December 2002).

Page 12 of 12



